首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chicken manure, dairy manure and sawdust were evaluated as carbon sources in promoting sulfate reduction, and the mechanism of heavy metals removal in sulfidogenic bioreactor was revealed. The sulfate reduction reached 79.04% for chicken manure, 64.78% for dairy manure, and 50.27% for sawdust on 35th day, which showed that chicken manure could promote sulfate reducing bacteria (SRB) activity, followed by dairy manure and sawdust. In batch experiment, although chicken and dairy manure bioreactors showed sulfidogenic activity, it demonstrated less than 5% contribution from sulfide precipitation and over 95% from other removal mechanisms (sorption to manure particles and hydroxides precipitation, etc.). Column bioreactor showed satisfactory performance in biological remediation of acid mine drainage, evidenced by effluent Eh and pH, high removal efficiencies of sulfate and metals, and a considerable SRB counts. SEM–EDS analysis of the formed precipitate showed metal sulfides were formed. The results indicated that organic waste played an important role in sulfidogenic activity, which could not only provide reducing condition and carbon source for sulfate reduction process, but also reduce the adverse effect of heavy metal and strong acidity on SRB activity owning to metals sorption and acidity buffer of organic waste.  相似文献   

2.
Heavy metal-resistant immobilized sulfate-reducing bacteria (SRB) granules were prepared to treat acid mine drainage (AMD) containing high concentrations of multiple heavy metal ions using an up-flow anaerobic packed-bed bioreactor. The bioreactor demonstrated satisfactory performance at influent pH 2.8 and high concentrations of metals (Fe 463 mg/L, Mn 79 mg/L, Cu 76 mg/L, Cd 58 mg/L and Zn 118 mg/L). The effluent pH ranged from 7.8 to 8.3 and the removal efficiencies of Fe, Cu, Zn and Cd were over 99.9% except for Mn (42.1–99.3%). The bacterial community in the bioreactor was diverse and included fermentative bacteria and SRB (Desulfovibrio desulfiricans) involved in sulfate reduction. The co-existing anaerobic fermentative bacteria (Clostridia bacterium, etc.) with the ability to use lactate as electron donor could explain the differences between actual lactate consumption and what would be expected based solely on sulfate reduction.  相似文献   

3.
The treatment of acid mine drainage (AMD) and circumneutral mine water (CMW) with South African coal fly ash (FA) provides a low cost and alternative technique for treating mine wastes waters. The sulphate concentration in AMD can be reduced significantly when AMD was treated with the FA to pH 9. On the other hand an insignificant amount of sulphate was removed when CMW (containing a very low concentration of Fe and Al) was treated using FA to pH 9. The levels of Fe and Al, and the final solution pH in the AMD–fly ash mixture played a significant role on the level of sulphate removal in contrast to CMW–fly ash mixtures. In this study, a modelling approach using PHREEQC geochemical modelling software was combined with AMD–fly ash and/or CMW–fly ash neutralization experiments in order to predict the mineral phases involved in sulphate removal. The effects of solution pH and Fe and Al concentration in mine water on sulphate were also investigated. The results obtained showed that sulphate, Fe, Al, Mg and Mn removal from AMD and/or CMW with fly ash is a function of solution pH. The presence of Fe and Al in AMD exhibited buffering characteristic leading to more lime leaching from FA into mine water, hence increasing the concentration of Ca2+. This resulted in increased removal of sulphate as CaSO4·2H2O. In addition the sulphate removal was enhanced through the precipitation as Fe and Al oxyhydroxysulphates (as shown by geochemical modelling) in AMD–fly ash system. The low concentration of Fe and Al in CMW resulted in sulphate removal depending mainly on CaSO4·2H2O. The results of this study would have implications on the design of treatment methods relevant for different mine waters.  相似文献   

4.
The rate of acid mine drainage (AMD) generation is directly proportional to the surface area and so to the particle size distribution of acid-forming minerals exposed to oxidation. Materials in various particle sizes are subject to weathering processes at field condition; however, the particle size dependent oxidation rate has not been investigated for understanding entire geochemical behavior at a mining site. Therefore, a comprehensive research program was aimed to investigate the effect of particle size on pH variation and acid mine drainage generation using kinetic column tests, and then to find convenient methodologies for upscaling laboratory-based results to the field condition. For this purpose, ore samples collected from Murgul Damar open-pit mining were grinded in three different particle size distributions that are coarse (minus 22.5 mm), medium (minus 3.35 mm) and fine (minus 0.625 mm) sizes, 34 columns were designed in different dimensions for kinetic column tests. It was found that the cumulative concentration of the many constituents measured from medium particles (minus 3.35 mm) are higher than coarser samples due to decreasing specific surface area with increasing particle size. Similarly, because of decreasing of hydraulic conductivity with increasing the fine content, the cumulative concentration of constituents measured from medium particles (minus 3.35 mm) are also higher than finer particles (minus 0.625 mm). Based on statistical and analytical analyses of the results of kinetic column tests, the time required to initiate acid formation at field condition varied between 489 and 1002 days depending on particle size distribution. In addition, considering the effect of particle size and the results of related statistical analysis, main oxidation (SO42−) and neutralization (Ca2+, Mg2+, Mn2+ etc.) products were also successfully upscaled to the field condition.  相似文献   

5.
Failure to accurately predict acid rock drainage (ARD) leads to long-term impacts on ecosystems and human health, in addition to substantial financial consequences and reputational damage to operators. Currently, a range of chemical static and kinetic tests are used to evaluate the acid producing nature of materials, from which risk assessments are prepared and waste classification schemes designed. However, these well-established tests and practices have inherent limitations, for example: (i) best-practice sampling is not pursued; (ii) risk assessments rely on limited static and kinetic test data, thus compromising the accuracy of resulting ARD block models; (iii) static tests are completed off-site and do not reflect actual field measurements; (iv) kinetic test data do not become available until later stages of mine development; (v) waste classification schemes generally categorise materials as only three types (i.e., PAF, NAF and UC) with other drainage forms (e.g., neutral metalliferous or saline) not considered; and (vi) conventional testing fails to consider that reactivity of waste is controlled by parameters other than chemistry (e.g., microbiology, type and occurrence of minerals, texture and hardness). Thus, accurate prediction is challenging because of the multifaceted processes leading to ARD. Hence, risk assessments need to consider mineralogical, textural and geometallurgical rock properties in addition to predictive geochemical test data. Instead, a new architecture of integrative, staged ARD testing should be pursued. Better ARD prediction must start with improving the definition of geoenvironmental models and waste units. Then, a range of low-cost and rapid tests for the screening of samples should be conducted on site prior to the performance of established tests and advanced analyses using state-of-the-art laboratories. Such an approach to ARD prediction would support more accurate and cost-effective waste management during operation, and ultimately less costly mine closure outcomes.  相似文献   

6.
Slurry transportation is an economic haulage system in oil sands and coal-mining operations characterized by long haulage distances and rugged terrain. In such conditions, the ton-km-hr limits are exceeded creating extreme tire wear and high maintenance costs. Steep haul grades and rugged terrain also cause mechanical wear and tear, which decrease haulage equipment economic life. Hydraulic transportation is a proven and viable technology for slurry transportation in such conditions. Currently, stationary pipeline transportation is being used in transporting minerals in many mines. There is an increasing demand to create slurrified minerals at the mining faces to be transported to the processing plant. However, stationary pipelines are not capable for dealing with the rapidly changing configuration of the mining faces. In this paper, the authors develop the ground articulating pipeline (GAP) technology to address this problem. The GAP system consists of pipelines connected together with flexible joints in each pipe section, which allows deflection to avoid torsional stresses from the adjoining frames. This flexible arrangement accommodates the horizontal and vertical displacements of the mobile system as it follows the hydraulic shovels in the excavation process. The mechanics of the GAP system, as well as the production–economic function, are formulated and simulated over an extended period using data and information from Syncrude’s North Mine. The results show that the GAP system is technically and economically viable for productivity between 6,300 and 6,500 tons per hour. The simulated head loss for the GAP system is 15.66 m per 400 m, which compares with 20 m per 400 m for the existing stationary system at Syncrude. The pressure gradient-radius curves are asymptotic to the pipe boundaries, which indicates steep axial pressure gradient in these areas.  相似文献   

7.
酸性矿山废水的处理对环境可持续性至关重要。目前,利用硫酸盐还原菌修复酸性矿山废水因高效经济、环境友好、绿色安全等优势,备受国内外研究学者的关注。因此,本文通过对有关硫酸盐还原菌处理酸性矿山废水文献进行梳理,综述了酸性矿山废水的来源及危害,总结了硫酸盐还原菌去除酸性矿山废水中高硫酸盐和金属的机理,详细介绍了影响硫酸盐还原菌处理酸性矿山废水的主要因素,阐述了基于硫酸盐还原的生物反应器系统。最后,对硫酸盐还原菌处理酸性矿山废水的研究进行展望并提出建议。  相似文献   

8.
In this study basic oxygen and stainless steel slag were both assessed for potential use in treating acid mine drainage. The stainless steel slag was able to effect some pH change but was found to not be suitable. Basic oxygen slag was found to have a significant potential as a remediating agent. For a model acid mine water with a pH of 2.5, sulfate concentration of 5000 mg/L and iron concentration of 1000 mg/L, the slag was able to increase pH to 12.1, reduce the soluble iron by 99.7% and reduce sulfate by 75% in batch experiments. In these batch reactors most reaction was completed within 30 min indicating that this is a rapid process. Additional experiments were conducted with continuous flow reactors to assess the maximum treatment capacity of the slag. These experiments indicated that slag replacement strategies are wholly dependent on the strength of the acid mine drainage, the required residence time and the specified residual concentrations of iron or sulfate and the pH. The data indicate that in particular, basic oxygen furnace slag has significant potential as a replacement reagent for lime in treating acid mine drainage.  相似文献   

9.
The possibility of using acid mine drainage (AMD) treatment sludge as a cover component to control AMD generation from mine wastes was investigated through laboratory characterization and kinetic column testing (companion paper). The results showed that mixtures of sludge and waste rock, and sludge and tailings, may be integrated in an AMD prevention and control strategy at Doyon mine site (northwestern Quebec, Canada). In order to further investigate these scenarios in realistic climatic conditions, instrumented field test cells were installed on site to evaluate the performance of the mixtures to control AMD generation from tailings and waste rock under natural field conditions. The main findings from two seasons of monitoring are presented in the paper. The waste rock-sludge mixture placed over waste rock was able to reduce the generation of AMD from the waste rock, therefore confirming lab results, and was able to produce a neutral effluent with low concentrations of dissolved metals. The tailings-sludge mixture placed over tailings, with an evaporation protection layer, maintained a high volumetric water content and reduced sulphide oxidation from the tailings as exhibited by a neutral effluent. Monitoring of the field cells will continue to provide valuable information on the possible sludge valorization options.  相似文献   

10.
The paper deals with a possible utilisation of wood ash as a reagent in treating acid mine drainage (AMD) from opencast mining of brown coal. Wood ash samples were obtained having combusted deciduous and coniferous tree wood in a household furnace. The dominant mineral phases in wood ash are calcite, quartz, lime and periclase. The used AMD is characteristic of high contents of sulphates, iron, manganese, heavy metals and low pH. The AMD treatment process included dosing of wood ash to adjust pH values about 8.3 (a dose of 0.5 g l−1) or calcium hydroxide (a dose of 0.2 g l−1) for comparison. The reaction time was 20 min. Dosing of wood ash in AMD resulted in an increase of pH in solution from 3.5 to 8.3, which caused the removal of metal ions mainly by precipitation, co-precipitation and adsorption. Comparing the application of Ca(OH)2 in AMD treatment, at an almost identical pH value the concentrations fell in both cases for Fe, Mn, As, Co, Cu, Ni, Zn, Mg, Al and Mo. Applying wood ash the drop was even more distinct in Mn, Zn and Mg. The results of sedimentation tests in an Imhoff cone confirm that the settling capacities of sludge using wood ash are significantly better than when using calcium hydroxide in acid mine drainage treatment.  相似文献   

11.
酸性矿山废水(AMD)是最为严重的环境污染之一,主要由黄铁矿氧化引起。AMD的治理主要有末端处理和源头控制两条途径,末端处理技术不能从根本上解决污染问题,因此从源头控制黄铁矿的氧化是治理AMD的根本途径。源头控制技术主要有覆盖法、杀菌法和表面钝化法等,表面钝化法是目前科研工作者的研究热点。在介绍AMD成因的基础上,综述了各种表面钝化技术。重点概述了有机硅烷、载体-微胶囊化、自修复等技术的研究现状,分析了不同方法的优缺点,并针对其不足之处提出了今后的研究方向。为解决黄铁矿氧化问题、实现AMD污染的有效治理提供参考。  相似文献   

12.
Acid mine drainage (AMD) is the most serious environmental problem facing the Canadian mineral industry today. It results from oxidation of sulphide minerals (e.g. pyrite or pyrrhotite) contained in mine waste or mine tailings and is characterized by acid effluents rich in heavy metals that are released into the environment. A new acid remediation technology is presented, by which metallurgical residues from the aluminium extraction industry are used to construct permeable reactive barriers (PRBs) to treat acid mine effluents. This technology is very promising for treating acid mine effluents in order to decrease their harmful environmental effects.  相似文献   

13.
In operating mines, acid mine drainage (AMD) is often treated using lime treatment. This process generates a significant amount of sludge that contains metal hydroxide precipitates, gypsum, and unreacted lime. The sludge may have interesting geotechnical and geochemical properties to be used as a part of covers (oxygen barriers) to prevent AMD generation from waste rocks and tailings. The main results of a project aiming to evaluate the use of sludge from the Doyon mine site (Canada) as a material in mine site rehabilitation are presented. The first part of the project involved detailed characterization of sludge, waste rock, and tailings samples. Then, laboratory column leaching tests were performed to evaluate the performance of the mixtures to control AMD produced by tailings and waste rocks. It was found that a sludge–waste rock mixture placed over waste rock reduces the metal loads in the column effluent, which remained acidic, as well as a mixture of sludge and tailings deposited over tailings can reduce metal content in effluents from tailings.  相似文献   

14.
Acid mine drainage (AMD) generation is a widespread environmental problem in Europe, including Portugal. Previous experience has shown that a combined process consisting of an anaerobic sulphate-reducing bioreactor, following neutralization with calcite tailing, produces water complying with legal irrigation requirements from synthetic AMD. Aiming the treatment of real AMD a new bioreactor was inoculated with a SRB enrichment obtained from sludge from a local WWTP anaerobic lagoon. In the initial batch phase, sulphate supplementation was needed to achieve high sulphate-reducing bacteria counts before continuous feeding of AMD was started. The system quickly achieved good performance, proving it is easy to start-up. However, this time the neutralization step failed to keep bioreactor affluent pH higher than 5 for longer than three weeks. This was due to armouring of calcite by precipitates of various metals present in AMD. A new configuration, replacing a packed-bed column by a shallow contact basin, proved to be more robust, avoiding clogging, short-circuiting and providing long-term neutralization. The treated effluent, with excess of biologically generated sulphide, was successfully used to synthesize zinc sulphide nanoparticles, both in pure form and as a ZnS/TiO2 nanocomposite, thus proving the feasibility of coupling an AMD bioremediation system with the synthesis of metal sulphide nanoparticles and nanocomposites.  相似文献   

15.
生物转盘反应器是一种高效率的微生物固定化装置,很适合处理水量适中的矿山酸性废水。研究了生物转盘反应器启动阶段的工艺条件。试验结果表明:以10%接种量接种,连续6次培养后,可完成反应器的启动;伴随着多次反复培养挂膜进程,Fe2+氧化周期不断缩短,由最初的100 h降低到70 h,同时生物膜对Fe2+的氧化能力不断趋于稳定。考察了反应器在稳定阶段时,水力停留时间、转盘转速和入口浓度对Fe2+氧化率的影响。结果表明,在本试验条件下,最佳水力停留时间为4 h,合理转盘转速为7 r/min。  相似文献   

16.
首钢矿业公司二马采区挂帮矿开采是该采区露天转地下项目的前期工程,本文结合现场实际,对挂帮矿开采的开拓系统及采矿方法进行合理选择,以达到尽早出矿、安全高效生产的目的,为此类开采设计及生产提供借鉴。  相似文献   

17.
煤矸石用于人工湿地处理酸性矿井水的研究   总被引:1,自引:0,他引:1  
阐述了利用煤矸石作为人工湿地填料处理酸性矿井水的技术研究,对煤矸石的综合利用、酸性矿井水的回用以及矿区生态环境的综合治理都有重要意义。  相似文献   

18.
Acid mine drainage (AMD) is known as one of the most important environmental problem of sulfide bearing rocks encountered worldwide. Several methods based on static and kinetic principles have been developed for estimation of AMD potential and determination of the contaminants concentration to the environment. Of these methods, kinetic column test is commonly performed due to its better representative of actual field conditions. However, the effect of main controlling factors such as column dimensions, the amount of material and its particle size on the results of kinetic column test were not investigated in details. Considering the importance of AMD and the limitations in conjunction with these main controlling factors, the objective of this study is to investigate the mechanism of the AMD generation and to perform this test by using samples in varied particle size and columns in different dimensions. For this purpose, columns were designed in various dimensions and samples were collected from Murgul Damar open-pit mining to be used in the kinetic column test. Several techniques were utilized to determine the mineralogical, physical and/or chemical composition of these samples before and during kinetic column tests. The variations of the pH and the concentration release rates of many elements and compounds were monitored during kinetic column tests. Statistically significant correlations were obtained between column dimensions and “lag time”. Similarly, it is determined that statistically significant correlations exist among column dimensions and cumulative mass release rates of SO4 and the Ca + Mg + Mn.  相似文献   

19.
首钢矿业公司二马采区露天转地下挂帮矿开采方案选取   总被引:2,自引:2,他引:0  
首钢矿业公司二马采区挂帮矿开采是该采区露天转地下项目的前期工程,结合现场实际,对挂帮矿开采的开拓系统及采矿方法进行合理选择,达到尽早出矿、安全高效生产的目的,为此类开采设计及生产提供借鉴。  相似文献   

20.
煤矿酸性矿井水中有害元素的迁移特性   总被引:7,自引:0,他引:7       下载免费PDF全文
利用电感耦合等离子质谱(ICP-MS)、离子色谱(IC)和X射线衍射(XRD)等方法研究了马兰煤矿酸性矿井水及其沉淀物的化学成分和物相组成,并通过吸附解吸实验和PHREEQC水化学模拟计算研究了典型酸性矿井水样品中Pb,Th,U,Be,Zn,Ni,Co,Cd,Cu,As,Cr,V,Ba等有害元素的迁移特性.研究表明:① 煤矿酸性矿井水中SO2-4,Fe,Mn,Al,Pb,Th,U,Be,Zn,Ni,Co,Cu等离子含量较高,对环境存在潜在危害;② 酸性矿井水中有害元素的迁移主要受pH,Fe-Al-Mn含量和水体颗粒物矿物组成的控制;③ Fe,Al和Mn的含量随pH上升而迅速下降,并控制着Pb,Th,U,Be,Zn,Ni,Co,Cu等潜在有害微量离子的迁移行为; ④ 各离子随pH上升被去除的先后顺序为: Th>Fe>Pb >Cr>Al>Cu>Be>U>Zn>As>Cd>Mn>Co>Ni>Ba;⑤ 酸性矿井水中V不能够随pH的升高而去除,反而会有更多的V溶解在水中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号