首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
We report a detailed investigation of the magnetization reversal by minor loops in Co75Fe25 (t) single layer and Ir22Mn78(10 nm)/CoFe(t) exchange-biased bilayers with different CoFe thicknesses. With increasing CoFe layer thickness in IrMn/CoFe bilayers, the magnetization reversal process shows a transition from the coherent rotation to the domain-wall motion, which is attributed to the competition among the antiferromagnetic domain wall energy, ferromagnetic domain wall energy, and the interface coupling between antiferromagnetic and ferromagnetic layers.  相似文献   

2.
Two-layered ferromagnetic alloy films (NiFe and CoFe) with intermediate NiFeCuMo soft magnetic layers of different thicknesses were investigated to understand the relationship between coercivity and magnetization process by taking into account the strength of hard-axis saturation field. The thickness dependence of HEC (easy-axis coercivity), HHS (hard-axis saturation field), and χ (susceptibility) of the NiFeCuMo thin films in glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared using the ion beam deposition method was determined. The magnetic properties (HEC, HHS, and χ) of the ferromagnetic CoFe, NiFe three-layers with an intermediate NiFeCuMo super-soft magnetic layer were strongly dependent on the thickness of the NiFeCuMo layer.  相似文献   

3.
[Co(0.2 nm)∕Pd(0.8 nm)](20) multilayered films on 15 nm Pd-TiN seed layers were fabricated by dc magnetron sputtering without heating the substrate. The effects of TiN content on microstructure and magnetic properties of the [Co∕Pd] multilayered media were studied. By increasing the TiN content in the Pd-TiN seed layer to an optimum level, coercivity of the [Co∕Pd] multilayered media increased to 6.7 kOe. However, further increase of TiN content beyond 22 vol % reduced coercivity (Hc), implying that there exists a critical TiN concentration to enhance the magnetic property of the [Co∕Pd] multilayered media. Transmission electron microscopic observations revealed that well-isolated [Co∕Pd] multilayered grains with apparent grain boundaries were achieved by controlling the TiN content in the Pd-TiN seed layer. The average grain diameter was 8 nm with a dispersion of 11.2%, grown on the Pd-TiN seed layer with TiN content of 22 vol %.  相似文献   

4.
In this report we describe some experimental results concerning the preparation by electrodeposition and characterization of Co/Zn multilayer films, a system of special significance because Co and Zn are immiscible in a large range of compositions, permitting an easier adaptation of the sharp interfaces and the magnetic interactions between layers, with a view to obtain technological applications in nano-electronics. We established the working parameters for electrodeposition of multilayer films based on Co and Zn nanoscale layers, using a dual-bath potentiostatic electrodeposition method. The effect of the first electrodeposited layer growth process on the structure and magnetic properties of the multilayer were studied by using two series of multilayers of varying periods, starting with Co or Zn layers, respectively (with the same total thickness of Co layers, namely 50 layers of 5 nm thick, but various Zn layer thickness). These properties were also studied as a function of the Zn layer thicknesses (varying between 0.1 nm and 5.9 nm), for the two series of films. The magnetoresistance (in the current in plane configuration with dc magnetic field applied in the film plane), varied with Zn layer thickness, exhibiting a giant magnetoresistance contribution of about 30% in the case of [Co (5 nm)/Zn (2.7 nm)]50 films.  相似文献   

5.
Arrays of ultrathin Pt/Co(0.5 nm)/Pt nano-platelets with lateral sizes ranging from 30 nm to 1 μm have been patterned by focused ion beam (FIB) lithography under a weak Ga(+) ion fluence. From polar magneto-optical Kerr microscopy it is demonstrated that nano-platelets are ferromagnetic with perpendicular anisotropy down to a size of 50 nm. The irradiation process creates a magnetically soft ring at the nano-platelet periphery in which domain nucleation is initiated at a low field. The magnetization reversal in nano-platelets can be interpreted using a confined droplet model. All of the results prove that ultimate FIB patterning is suitable for preparing discrete magnetic recording media or small magnetic memory elements and nano-devices.  相似文献   

6.
We show that 3 nm wide cobalt-iron alloy nanowires can be synthesized by simple wet chemical electroless deposition inside tubular Tobacco mosaic virus particles. The method is based on adsorption of Pd(II) ions, formation of a Pd catalyst, and autocatalytic deposition of the alloy from dissolved metal salts, reduced by a borane compound. Extensive energy-filtering TEM investigations at the nanoscale revealed that the synthesized wires are alloys of Co, Fe, and Ni. We confirmed by high-resolution TEM that our alloy nanowires are at least partially crystalline, which is compatible with typical Co-rich alloys. Ni traces bestow higher stability, presumably against corrosion, as also known from bulk CoFe. Alloy nanowires, as small as the ones presented here, might be used for a variety of applications including high density data storage, imaging, sensing, and even drug delivery.  相似文献   

7.
It is shown that spin-polarized currents occur in metallic and ferromagnetic Ga1–x Mn x As/GaAs multilayered structures, as a result of the magnetic interaction between holes and the Mn ions. The magnetic layers act as potential barriers for holes with spins aligned parallel to the layer magnetization, and as potential wells for the inverse spin polarization. In the case of currents in-plane, holes with spin parallel and antiparallel to this magnetization move in different regions. By choosing properly the magnetic and the nonmagnetic layers widths, a spin-polarized transport with a difference of an order of magnitude on the mobilities for each spin polarization is predicted to occur. Spin-polarized minibands are also shown to occur in a superlattice based on the same structure. We calculated the dependence of the spin polarization with the superlattice parameters, and we discuss how this polarization affects the Bloch miniband transport in such ferromagnetic superlattice.  相似文献   

8.
We have studied the surface morphology, interfaces, and structure of individual Co and TiO2 films 2 to 10 nm in thickness and those of Co/TiO2 multilayers up to 100 nm in thickness. Auger depth profiling and transmission electron microscopy results show that [Co(2 nm)/TiO2(2 nm)]15, [Co(2 nm)/TiO2(4 nm)]15, and [Co(4 nm)/TiO2(4 nm)]12 structures are composed of continuous layers well adherent to one another, with sharp interfaces. The conclusion is made that such multilayer structures can be used as model systems in designing magneto-optical and spintronic devices.  相似文献   

9.
Pd/Co/Pd tri-layer films were prepared on MgO substrates of (001), (111), and (011) orientations at room temperature by ultra high vacuum rf magnetron sputtering. The detailed film structures around the Co/Pd and the Pd/Co interfaces are investigated by reflection high energy electron diffraction. Pd layers of (001)fcc, (111)fcc, and (011)fcc orientations epitaxially grow on the respective MgO substrates. Strained fcc-Co(001) single-crystal layers are formed on the Pd(001)fcc layers by accommodating the fairly large lattice mismatch between the Co and the Pd layers. On the Co layers,, Pd polycrystalline layers are formed. When Co films are formed on the Pd(111)fcc and the Pd(011)fcc layers, atomic mixing is observed around the Co/Pd interfaces and fcc-CoPd alloy phases are coexisting with Co crystals. The Co crystals formed on the Pd(111)fcc layers consist of hcp(0001) + fcc(111) and Pd(111)fcc epitaxial layers are formed on the Co layers. Co crystals epitaxially grow on the Pd(011)fcc layers with two variants, hcp(11?00) and fcc(111). On the Co layers, Pd(011)fcc epitaxial layers are formed.  相似文献   

10.
A series of CoFe/Cu multilayers were electrodeposited on Ti substrates from the electrolytes containing their metal ion under potentiostatic control, but the Fe concentration in the electrolytes was changed from 0.0125 M to 0.2 M. The deposition was carried out in a three-electrode cell at room temperature. The deposition of Cu layers was made at a cathode potential of -0.3 V with respect to saturated calomel electrode (SCE), while the ferromagnetic CoFe layers were deposited at -1.5 V versus SCE. The structural studies by X-ray diffraction revealed that the multilayers have face-centered-cubic structure. The magnetic characteristics of the films were investigated using a vibrating sample magnetometer and their easy-axis was found to be in film plane. Magnetoresistance measurements were carried out using the Van der Pauw method at room temperature with magnetic fields up to +/- 12 kOe. All multilayers exhibited giant magnetoresistance (GMR) and the GMR values up to 8% were obtained.  相似文献   

11.
Magnetization dynamics and field dependent magnetization of different devices based on 25-30 nm thick Permalloy (Py) films: such as single Py layers (Py/MgO; Py/CoFeB/Al2O3) and Py inserted as a magnetic layer in magnetic tunnel junctions (Py/CoFe/Al2O3/CoFe; Py/CoFeB/Al2O3/CoFe; Py/MgO/Fe) have been extensively studied within a temperature range between 300 K down to 5 K. The dynamic response was investigated in the linear regime measuring the ferromagnetic resonance response of the Py layers using broadband vector network analyzer technique. Both the static and the dynamic properties suggest the possible presence of a thermally induced spin reorientation transition in the Py interface at temperatures around 60 K in all the samples investigated. It seems, however, that the details of the interface between Py and the hardening ferromagnet/insulator structure, the atomic structure of Py layers (amorphous vs. textured) as well as the presence of dipolar coupling through the insulating barrier in the magnetic tunnel junction structures could strongly influence this low temperature reorientation transition. Our conclusions are indirectly supported by structural characterization of the samples by means of X-Ray diffraction and high resolution transmission electron microscopy techniques. Micromagnetic simulations indicate the possibility of strongly enhanced surface anisotropy in thin Py films over CoFe or CoFeB underlayers. Comparison of the simulations with experimental results also shows that the thermally-induced spin reorientation transition could be influenced by the presence of strong disorder at the surface.  相似文献   

12.
采用化学共沉法和TiCl4水解法制备CoFe2O4磁粒子和核壳型CoFe2O4/TiO2光催化剂,在100℃烘干,350℃焙烧2 h,在紫外光源和太阳光照射下所制备的CoFe2O4/TiO2光催化剂显示出较高的甲基橙降解能力,利用外加磁场很容易将CoFe2O4/TiO2光催化剂和所处理的污水分离,并可循环使用.TEM和XRD分析结果表明:CoFe2O4粒径约为20nm,TiO2包覆的CoFe2O4粒子的粒径约为30~40nm,TiO2包覆层约为10~20nm.  相似文献   

13.
Giant magnetoresistance (GMR) in spin valves is due to spin-dependent scattering occurring at ferromagnet/normal metal (F/N) interfaces and/or in the ferromagnetic layers. In a spin valve with a typical F/N/F structure where the spin scattering asymmetry factor $(alpha)$ of both F/N interfaces is the same (more or less than 1), the GMR is expected to be positive. If $alpha$ is greater than one at one F/N interface and less than one at the other F/N interface, however, the GMR is expected to be negative. Here, we show that the F1/Cu/SAF/Cu/F2/IrMn dual spin valve structure exhibits negative GMR, where F1 and F2 are CoFe and ${rm SAF} = {rm CoFe}/{rm Ru} t/{rm CoFe}$, due to both opposite electron spin scattering asymmetry factor at the CoFe/Ru/CoFe interfaces as well as the electrical separation of the overall structure into two GMR spin valves connected in parallel. A GMR of 6% is observed in the structure without the Ru spacer layer, insertion of a 0.6 nm thick Ru in the SAF results in a negative GMR ratio of ${-}3hbox{%}$ , which becomes positive again at the Ru thickness of 0.8 nm, the oscillation from positive to negative MR is consistent with interlayer exchange coupling period across the Ru spacer.   相似文献   

14.
Nanoscale modifications of strain and magnetic anisotropy can open pathways to engineering magnetic domains for device applications. A periodic magnetic domain structure can be stabilized in sub‐200 nm wide linear as well as curved magnets, embedded within a flat non‐ferromagnetic thin film. The nanomagnets are produced within a non‐ferromagnetic B2‐ordered Fe60Al40 thin film, where local irradiation by a focused ion beam causes the formation of disordered and strongly ferromagnetic regions of A2 Fe60Al40. An anisotropic lattice relaxation is observed, such that the in‐plane lattice parameter is larger when measured parallel to the magnet short‐axis as compared to its length. This in‐plane structural anisotropy manifests a magnetic anisotropy contribution, generating an easy‐axis parallel to the short axis. The competing effect of the strain and shape anisotropies stabilizes a periodic domain pattern in linear as well as spiral nanomagnets, providing a versatile and geometrically controllable path to engineering the strain and thereby the magnetic anisotropy at the nanoscale.  相似文献   

15.
The magnetization direction of a metallic magnet has generally been controlled by a magnetic field or by spin-current injection into nanosized magnetic cells. Both these methods use an electric current to control the magnetization direction; therefore, they are energy consuming. Magnetization control using an electric field is considered desirable because of its expected ultra-low power consumption and coherent behaviour. Previous experimental approaches towards achieving voltage control of magnetization switching have used single ferromagnetic layers with and without piezoelectric materials, ferromagnetic semiconductors, multiferroic materials, and their hybrid systems. However, the coherent control of magnetization using voltage signals has not thus far been realized. Also, bistable magnetization switching (which is essential in information storage) possesses intrinsic difficulties because an electric field does not break time-reversal symmetry. Here, we demonstrate a coherent precessional magnetization switching using electric field pulses in nanoscale magnetic cells with a few atomic FeCo (001) epitaxial layers adjacent to a MgO barrier. Furthermore, we demonstrate the realization of bistable toggle switching using the coherent precessions. The estimated power consumption for single switching in the ideal equivalent switching circuit can be of the order of 10(4)k(B)T, suggesting a reduction factor of 1/500 when compared with that of the spin-current-injection switching process.  相似文献   

16.
Topologically protected magnetic states have a variety of potential applications in future spintronics owing to their nanoscale size (<100 nm) and unique dynamics. These fascinating states, however, usually are located at the interfaces or surfaces of ultrathin systems due to the short interaction range of the Dzyaloshinskii–Moriya interaction (DMI). Here, magnetic topological states in a 40-unit cells (16 nm) SrRuO3 layer are successfully created via an interlayer exchange coupling mechanism and the interfacial DMI. By controlling the thickness of an antiferromagnetic and ferromagnetic layer, interfacial ionic polarization, as well as the transformation between ferromagnetic and magnetic topological states, can be modulated. Using micromagnetic simulations, the formation and stability of robust magnetic skyrmions in SrRuO3/BiFeO3 heterostructures are elucidated. Magnetic skyrmions in thick multiferroic heterostructures are promising for the development of topological electronics as well as rendering a practical approach to extend the interfacial topological phenomena to bulk via antiferromagnetic order.  相似文献   

17.
The three kinds of double-barrier magnetic tunnel junction (DMTJ) with or without amorphous ferromagnetic Co$_{70.5}$ Fe$_{4.5}$ Si$_{15}$ B$_{10}$ (in at. %) free-layer were investigated to understand the effect of the free-layer on the bias voltage dependence of tunneling magnetoresistance (TMR) ratio. The DMTJ structure consisted of Ta 45/Ru 9.5/IrMn 10/CoFe 7/AlO$_{rm x}$/free-layer 7/AlO$_{rm x}$/CoFe 7/IrMn 10/Ru 60 (thickness in nm). Various free layers, such as CoFe 7, CoFeSiB 7, and CoFe 1.5/CoFeSiB 4/CoFe 1.5 were prepared and compared. The roughness values of the interface between free-layer and tunnel barrier were confirmed by using the techniques of X-ray reflectivity and transmission electron microscopy. As a result, the amorphous free-layer made the interface roughness of DMTJ smoother, reducing the interlayer coupling field and suppressing the bias voltage dependence of TMR ratio at a given voltage.   相似文献   

18.
In order to harness the potential of block copolymers to produce nanoscale structures that can be integrated with existing silicon-based technologies, there is a need for compatible chemistries. Block copolymer nanostructures can form a wide variety of two-dimensional patterns, and can be controlled to present long-range order. Here we use the acid-responsive nature of self-assembled monolayers of aligned, horizontal block copolymer cylinders for metal loading with simple aqueous solutions of anionic metal complexes, followed by brief plasma treatment to simultaneously remove the block copolymer and produce metallic nanostructures. Aligned lines of metal with widths on the order of 10 nm and less are efficiently produced by means of this approach on Si(100) interfaces. The method is highly versatile because the chemistry to manipulate nanowire composition, structure and choice of semiconductor is under the control of the user.  相似文献   

19.
The composition, phase structure and microstructure of the discontinuous multilayer film [NiFeCo(10 nm)/Ag(10 nm)]×20 were investigated after Co ion implantation and annealing at 280, 320, 360 and 400℃, respectively.GMR (giant magnetoresistance) ratio of the film with/without Co ion implantation was measured. The results showed that Co ion implantation decreased the granule size of the annealed multilayer film, and increased Hc value and GM R ratio of the multilayer film. After annealing at 360℃, the multilayer film [NiFeCo(10 nm)/Ag(10 nm)] ×20with/without Co ion implantation both exhibited the highest GMR ratio of 12.4%/11% under 79.6 kA/m of applied saturation magnetic field.  相似文献   

20.
The composition, phase structure and microstructure of the discontinuous multilayer film [NiFeCo(10 nm)/ Ag(10 nm)]×20 were investigated after Co ion implantation and annealing at 280, 320, 360 and 400℃, respectively. GMR (giant magnetoresistance) ratio of the film with/without Co ion implantation was measured. The results showed that Co ion implantation decreased the granule size of the annealed multilayer film, and increased Hc value and GMR ratio of the multilayer film. After annealing at 360℃, the multilayer film [NiFeCo(10 nm)/Ag(10 nm)]×20 with/without Co ion implantation both exhibited the highest GMR ratio of 12.4%/11% under 79.6 kA/m of applied saturation magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号