首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work addresses the comparison of different strategies for improving biosensor performance using nanomaterials. Glucose biosensors based on commonly applied enzyme immobilization approaches, including sol-gel encapsulation approaches and glutaraldehyde cross-linking strategies, were studied in the presence and absence of multi-walled carbon nanotubes (MWNTs). Although direct comparison of design parameters such as linear range and sensitivity is intuitive, this comparison alone is not an accurate indicator of biosensor efficacy, due to the wide range of electrodes and nanomaterials available for use in current biosensor designs. We proposed a comparative protocol which considers both the active area available for transduction following nanomaterial deposition and the sensitivity. Based on the protocol, when no nanomaterials were involved, TEOS/GOx biosensors exhibited the highest efficacy, followed by BSA/GA/GOx and TMOS/GOx biosensors. A novel biosensor containing carboxylated MWNTs modified with glucose oxidase and an overlying TMOS layer demonstrated optimum efficacy in terms of enhanced current density (18.3 ± 0.5 μA mM(-1) cm(-2)), linear range (0.0037-12 mM), detection limit (3.7 μM), coefficient of variation (2%), response time (less than 8 s), and stability/selectivity/reproducibility. H(2)O(2) response tests demonstrated that the most possible reason for the performance enhancement was an increased enzyme loading. This design is an excellent platform for versatile biosensing applications.  相似文献   

2.
The apparent increase in hormone-induced cancers and disorders of the reproductive tract in wildlife and humans has led to a search for an accurate and reliable method for monitoring endocrine-disrupting chemicals (EDCs). This study presents a generic approach that may allow researchers to establish screening procedures for potential EDCs by correlating the analyte structures with biosensor responses and explain possible reaction mechanisms. A simple amperometric tyrosinase-based biosensor (Tyr-CPE) has been developed for the detection of phenolic EDCs. The investigation of the enzymatic oxidation of selected phenolic estrogens was first carried out using UV-vis spectroscopy. The result was used to correlate sensor responses to enzymatic activity. Natural phytoestrogen polyphenols, including resveratrol (RES), genistein (GEN), and quercetin (QRC), were compared with synthetic estrogens, for example, bisphenol A (BPhA), nonylphenol (NPh), and diethylstilbestrol (DES). The Tyr-CPE biosensor resulted in rapid, simple, and accurate measurement of phenolic estrogens with varying degrees of sensitivity, selectivity, and response times. The sensor responses have been evaluated for the detection of binary and tertiary mixtures of EDCs and natural estrogens. The results showed that BPhA could be successfully discriminated in a composite mixture containing NPh and DES at various ratios. In the case of natural phenolic estrogens GEN, RES, and QRC, the sensor allows the determination of a total phenolic content. The sensor was also validated for the detection of BPhA in a real environmental water sample, and the results was compared with standard ASTM method 9065. Mechanistically, our results indicated that the number of OH groups, the nature and the position of aryl ring substituents, or both could affect the detection limit and the biosensor sensitivity.  相似文献   

3.
In vivo neurochemical monitoring using microdialysis sampling is important in neuroscience because it allows correlation of neurotransmission with behavior, disease state, and drug concentrations in the intact brain. A significant limitation of current practice is that different assays are utilized for measuring each class of neurotransmitter. We present a high performance liquid chromatography (HPLC)-tandem mass spectrometry method that utilizes benzoyl chloride for determination of the most common low molecular weight neurotransmitters and metabolites. In this method, 17 analytes were separated in 8 min. The limit of detection was 0.03-0.2 nM for monoamine neurotransmitters, 0.05-11 nM for monoamine metabolites, 2-250 nM for amino acids, 0.5 nM for acetylcholine, 2 nM for histamine, and 25 nM for adenosine at sample volume of 5 μL. Relative standard deviation for repeated analysis at concentrations expected in vivo averaged 7% (n = 3). Commercially available (13)C benzoyl chloride was used to generate isotope-labeled internal standards for improved quantification. To demonstrate utility of the method for study of small brain regions, the GABA(A) receptor antagonist bicuculline (50 μM) was infused into a rat ventral tegmental area while recording neurotransmitter concentration locally and in nucleus accumbens, revealing complex GABAergic control over mesolimbic processes. To demonstrate high temporal resolution monitoring, samples were collected every 60 s while neostigmine, an acetylcholine esterase inhibitor, was infused into the medial prefrontal cortex. This experiment revealed selective positive control of acetylcholine over cortical glutamate.  相似文献   

4.
Lin CL  Shih CL  Chau LK 《Analytical chemistry》2007,79(10):3757-3763
A novel organically modified silica material has been prepared by covalent linking of the carboxylic acid group of lactate dehydrogenase to the amino group of an organoalkoxysilane precursor via a carbodiimide coupling reaction during the sol-gel process. The material was used to fabricate a leak-free biosensor. The experimental variables and characteristics of the biosensors were studied by electrochemical methods. Results showed that the coenzyme concentration, mediator concentration, and electrode rotation speed will influence the sensitivity of the biosensor. The biosensors exhibited high sensitivity (1.47 microA/mM), low detection limit (1.5 microM), reasonable apparent activity (1.31 min(-1)), good fabrication reproducibility, and good long-term operational stability (approximately 1 week).  相似文献   

5.
Biosensors for glutamate (Glu) were fabricated from Teflon-coated Pt wire (cylinders and disks), modified with the enzyme glutamate oxidase (GluOx) and electrosynthesized polymer PPD, poly(o-phenylenediamine). The polymer/enzyme layer was deposited in two configurations: enzyme before polymer (GluOx/PPD) and enzyme after polymer (PPD/GluOx). These four biosensor designs were characterized in terms of response time, limit of detection, Michaelis-Menten parameters for Glu (J max and K(M)(Glu)), sensitivity to Glu in the linear response region, and dependence on oxygen concentration, K(M)(O2). Analysis showed that the two polymer/enzyme configurations behaved similarly on both cylinders and disks. Although the two geometries showed different behaviors, these differences could be explained in terms of higher enzyme loading density on the disks; in many analyses, the four designs behaved like a single population with a range of GluOx loading. Enzyme loading was the key to controlling the K(M)(O2) values of these first generation biosensors. The counterintuitive, and beneficial, behavior that biosensors with higher GluOx loading displayed a lower oxygen dependence was explained in terms of the effects of enzyme loading on the affinity of GluOx for its anionic substrate. Some differences between the properties of surface immobilized GluOx and glucose oxidase are highlighted.  相似文献   

6.
A new biosensor based on amperometric transducer and alcohol oxidase immobilised in Resydrol polymer for ethanol detection has been developed. The optimal composition and immobilisation conditions for creating active membrane based on alcohol oxidase have been determined. Electrochemical deposition of the polymer film has been achieved by applying the potentiostatic pulse profile consisting of 20 consecutive pulses of + 1900 mV for 0.3 s and − 300 mV for 5 s. The biosensors developed show good analytical characteristics such as reproducibility, operational and storage stability. The minimal detection limit was 3.5 × 10 2 (% v/v) of ethanol. The biosensor developed has been shown to be a potential for ethanol detection in real alcoholic beverages.  相似文献   

7.
Xu S  Liu Y  Wang T  Li J 《Analytical chemistry》2010,82(22):9566-9572
A novel electrogenerated chemiluminescence (ECL) biosensor using gold nanoparticles as signal transduction probes was described for the detection of kinase activity. The gold nanoparticles were specifically conjugated to the thiophosphate group after the phosphorylation process in the presence of adenosine 59-[c-thio] triphosphate (ATP-s) cosubstrate. Due to its good conductivity, large surface area, and excellent electroactivity to luminol oxidization, the gold nanoparticles extremely amplified the ECL signal of luminol, offering a highly sensitive ECL biosensor for kinase activity detection. Protein kinase A (PKA), an important enzyme in regulation of glycogen, sugar, and lipid metabolism in the human body, was used as a model to confirm the proof-of-concept strategy. The as-proposed biosensor presented high sensitivity, low detection limit of 0.07 U mL(-1), wide linear range (from 0.07 to 32 U mL(-1)), and excellent stability. Moreover, this biosensor can also be used for quantitative analysis of kinase inhibition. On the basis of the inhibitor concentration dependent ECL signal, the half-maximal inhibition value IC(50) of ellagic acid, a PKA inhibitor, was estimated, which was in agreement with those characterized with the conventional kinase assay. While nearly no ECL signal change can be observed in the presence of Tyrphostin AG1478, a tyrosine kinase inhibitor, but not PKA inhibitor, shows its excellent performance in kinase inhibitor screening. The simple and sensitive biosensor is promising in developing a high-through assay of in vitro kinase activity and inhibitor screening for clinic diagnostic and drug development.  相似文献   

8.
Candida utilis (C. utilis) growing on sugar cane bagasse complemented with a mineral salt solution was studied for gaseous ethanol removal in a biofilter. Ethanol loads from 93.7 to 511.9 g/h m(3) were used, by varying both inlet ethanol concentration (9.72 to 52.4 g/m(3)) and air flow rate (1.59 x 10(-3) to 2.86 x 10(-3) m(3)/h). At a loading rate of 93.7 g/h m(3), a steady-state was maintained for 300 h. Ethanol removal was complete, and 76.3% of the carbon consumed was found in carbon dioxide. At an higher aeration rate (ethanol load=153.8 g/h m(3)), the biofilter displayed an average removal efficiency (RE) of 70%, and an elimination capacity (EC) of 107.7 g/h m(3). Only 64.4% of the carbon consumed was used for CO(2) production. Acetaldehyde and ethyl acetate in the outlet gas attained 7.86 and 20.4% in terms of carbon balance, respectively. In both cases, the transient phase was less than one day. At a high inlet ethanol concentration (52.4 g/m(3)), no steady-state was observed and the process stopped during the third day. In the three cases, final biomass was poor, ranging from 10.5 to 14.8 mg/g dm. Final pH 4.0-4.6, indicated that acidifying non-volatile metabolites, such as acetate, accumulated in the reactor.  相似文献   

9.
The fabrication and notably improved performance of composite electrodes based on modified self-assembled diphenylalanine peptide nanotubes is described. Peptide nanotubes were attached to gold electrodes, and we studied the resulting electrochemical behavior using cyclic voltammetry and chronoamperometry. The peptide nanotube-based electrodes demonstrated a direct and unmediated response to hydrogen peroxide and NADH at a potential of +0.4 V (vs SCE). This biosensor enables a sensitive determination of glucose by monitoring the hydrogen peroxide produced by an enzymatic reaction between the glucose oxidase attached to the peptide nanotubes and glucose. In addition, the marked electrocatalytic activity toward NADH enabled a sensitive detection of ethanol using ethanol dehydrogenase and NAD+. The peptide nanotube-based amperometric biosensor provides a potential new tool for sensitive biosensors and biomolecular diagnostics.  相似文献   

10.
The detection of paralytic shellfish poisoning (PSP) toxins in contaminated shellfish is essential for human health preservation. Ethical and technical reasons have prompted the search for new detection procedures as an alternative to the mouse bioassay. On the basis of the detection of molecular interactions by surface plasmon resonance (SPR) biosensors, an inhibition assay was developed using an anti-GTX2/3 antibody (GT13-A) and a saxitoxin-CM5 chip. This assay allowed for quantification of saxitoxin (STX), decarbamoyl saxitoxin (dcSTX), gonyautoxin 2,3 (GTX2/3), decarbamoyl gonyautoxin 2,3 (dcGTX2/3), gonyautoxin 5 (GTX5), and C 1,2 (C1/2) at concentrations from 2 to 50 ng/mL. The interference of five shellfish matrixes with the inhibition assay was analyzed. Mussels, clams, cockles, scallops, and oysters were extracted with five published methods. Ethanol extracts and acetic acid/heat extracts (AOAC Lawrence method) performed adequately in terms of surface regeneration and baseline interference, did not inhibit antibody binding to the chip surface significantly, and presented STX calibration curves similar to buffer controls in all matrixes tested. Hydrochloric acid/heat extracts (AOAC mouse bioassay method) presented surface regeneration problems, and although ethanol-acetic acid/dichloromethane extracts performed well, they were considered too laborious for routine sample testing. Overall the best results were obtained with the ethanol extraction method with calibration curves prepared in blank matrix extracts. STX recovery rate with the ethanol extraction method was 60.52+/-3.72%, with variations among species. The performance of this biosensor assay in natural samples, compared to two AOAC methods for PSP toxin quantification (mouse bioassay and HPLC), suggests that this technology can be useful as a PSP screening assay. In summary, the GT13-A-STX chip inhibition assay is capable of PSP toxin detection in ethanol shellfish extracts, with sufficient sensitivity to quantify the toxin in the range of the European regulatory limit of 80 microg/100 g of shellfish meat.  相似文献   

11.
The development of label-free optical biosensors for DNA and other biomolecules has the potential to impact life sciences as well as screening in medical and environmental applications. In this report, we developed a localized surface plasmon resonance (LSPR) based label-free optical biosensor based on a gold-capped nanoparticle layer substrate immobilized with peptide nucleic acids (PNAs). PNA probe was designed to recognize the target DNA related to tumor necrosis factor. The nanoparticle layer was formed on a gold-deposited glass substrate by the surface modified silica nanoparticles using silane-coupling reagent. The optical properties of gold-capped nanoparticle layer substrate were characterized through monitoring the changes in the absorbance strength, as the thickness of the biomolecular layer increased with hybridization. The detection of PNA-DNA hybridization with target oligonucleotides and PCR-amplified real samples were performed with a limit of detection value of 0.677 pM target DNA. Selective discrimination against a single-base mismatch was also achieved. Our LSPR-based biosensor with the gold-capped nanoparticle layer substrate is applicable to the design of biosensors for monitoring of the interaction of other biomolecules, such as proteins, whole cells, or receptors with a massively parallel detection capability in a highly miniaturized package.  相似文献   

12.
A colorimetric biosensor for convenient quantification of ethanol and methanol is described. The biosensor utilizes a 'one-pot' nanocomposite consisting of Fe3O4 magnetic nanoparticles (MNPs) and alcohol oxidase (Al Ox) simultaneously entrapped in large pore sized mesocellular silica. Al Ox immobilized in the silica generates H2O2 in the presence of alcohol in a sample, which subsequently activates MNPs in the mesopores of the silica to convert a colorimetric substrate into a colored product. Using this strategy, a target alcohol was specifically detected through a very convenient colorimetric signal resulting from the combined reactions. This strategy enabled successful sensing of ethanol and methanol in a linear concentration range from 100 to 500 microM with a detection limit as low as 25 microM by employing 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) as a peroxidase substrate. Along with excellent reusability via simple magnetic capturing, enhanced operational stability was achieved by the nanocomposite system. The present nanocomposite would serve as a novel platform for rapid and convenient analysis of alcohol.  相似文献   

13.
The cytotoxic effect of isoflavonoids in the development of different forms of cancer has been reported by epidemiological and dietary studies. Consequently, there is a search for an accurate and reliable method for monitoring the interactions of these chemicals with cancerous cells. We have developed and optimized a fully autonomous electrochemical biosensor for studying the role of isoflavonoids on A549 lung adenocarcinoma cell line. This advanced biosensor uses a prototype 96-electrode (DOX-96) well-type device that allows the measurement of cell respiratory activity via the consumption of dissolved oxygen. The system provides a continuous, real-time monitoring of cell activity upon exposure to naturally occurring polyphenols, specifically resveratrol, genistein, and quercetin. The system is equipped with a multipotentiostat, a 96-electrode well for measurements and cell culturing with 3 disposable electrodes fitted into each well. A comparison with classical "cell culture" techniques indicates that the biosensor provides real-time measurement with no added reagents. A detection limit of 1 x 10(4) was recorded versus 200 and 6 x 10(3) cells/well for MTT and fluorescence assays, respectively. This method was optimized with respect to cell stability, reproducibility, applied potential, cell density per well, volume/composition of cell culture medium per well, and incubation. Others include total measuring time, temperature, and sterilization procedure. This study represents a basic research tool that may allow researchers to study the type, level, and specific influence of isoflavonoids on cells.  相似文献   

14.
The unique catalytic, electrochemical, and oxygen storage properties of ceria and mixed ceria/titania hybrid composites were used to fabricate a new type of electrochemical enzyme biosensor. These materials provided increased analytical performance and possibilities for operation in oxygen-free conditions of an oxidase enzyme biosensor using tyrosinase as a model example. The investigation of the enzymatic reaction in the presence and absence of oxygen was first carried out using cyclic voltammetry. The results were used to identify the role of each metal oxide in the immobilization matrix and fabricate a simple amperometric tyrosinase biosensor for the detection of phenol and dopamine. The biosensor was optimized and characterized with respect to response time, detection limit, linear concentration range, sensitivity, and kinetic parameters. The detection limit for phenol was in the nanomolar range, with a detection limit of 9.0 x 10(-9) M and a sensitivity of 86 mA M(-1) in the presence of oxygen and of 5.6 x 10(-9) M and a sensitivity of 65 mA M(-1) in the absence of oxygen. The optimized biosensor also showed selective determination of the neurotransmitter dopamine with a detection limit of 3.4 x 10(-8) M and a sensitivity of 14.9 mA M(-1) in the presence of oxygen and of 4.2 x 10(-8) M and 14.8 mA M(-1) in the absence of oxygen. This strategy shows promise for increasing the sensitivity of oxidase enzyme sensors and provides opportunities for operation in oxygen limited conditions. It can also be extended for the development of other enzyme biosensors.  相似文献   

15.
The development of a microfluidic biosensor with fluorescence detection for the rapid, sensitive, and serotype-specific detection of Dengue virus is presented. The biosensor chip consists of poly(dimethylsiloxane) (PDMS) substrate with fabricated microchannels and a glass substrate used to seal the microchannels. These two substrates are packaged within a pressure-closed Plexiglas housing to provide a watertight reversible sealing at the PDMS-glass interface. The ability to reversibly seal the device permits easy disassembly and quick interchange of the device parts, which is ideal for developmental purposes. The biosensor employs a magnetic bead-based sandwich hybridization system in conjugation with liposome amplification for the specific detection of nucleic acids. The concentrations of the various biosensor components were optimized using a synthesized fragment of Dengue virus RNA. To evaluate the sensitivity of the assay, two detection systems, based on fluorescence measurements of intact and lysed liposomes, were analyzed. The entire analysis was complete within 20 min (including incubation time) with RNA detection limits of 0.125 nM and 50 pM for intact and lysed liposome detection systems, respectively. Subsequently, the biosensor was applied to the analysis of actual RNA obtained from Dengue virus serotypes 1-4. The resulting signals were compared to those obtained using standard electrochemiluminescence detection and shown to correspond perfectly with respect to serotype identification.  相似文献   

16.
We have developed an on-line analytical system involving microdialysis (MD) sampling, a carbohydrate membrane desalter (CMD), and an inductively coupled plasma mass spectrometer (ICPMS) system for the simultaneous determination of multiple trace metals in the extracellular fluid (ECF) in the brains of anesthetized rats. The microdialysate that perfused from the animal at a flow rate of 0.5 microL/min was on-line transferred to the CMD to remove the high-sodium matrix, followed by ICPMS measurement. The role of the CMD in this on-line system was investigated in detail. With prior addition of EDTA to the microdialysate to form anionic complexes of the metal analytes and the use of NH4Cl as a regenerant to exchange Na(+) with NH4(+) ions, both quantitative recovery of the trace metal analytes and quantitative removal of the sodium matrix could be achieved. Two experimental modes of the monitoring system were constructed. For those metals (e.g., Cu, Zn, and Mn) that existed at (sub)nanogram-per-milliliter concentrations in the microdialysate, the temporal resolution was 10 min when using a 10 microL loop for sample collection, followed by CMD and ICPMS; for those elements (e.g., Ca and Mg) that existed at microgram-per-milliliter levels (or greater), near-real-time analysis was possible because the microdialysate could be led, bypassing the sample loop, directly to the CMD for desalting without any time delay. Further improvement of the temporal resolution for the low-concentration elements was not possible without decreasing the detection limits of mass detection. Among the eight trace metals tested using this on-line system, the method detection limits for Cu, Zn, Mn, Co, Ni, and Pb reached subnanogram-per-milliliter levels; for electrolyte species such as Ca and Mg, the detection limits were in the range of 50-100 ng/mL. Analytical accuracy, expressed as spike recovery, was 100% +/- 15% for all of the elements tested. We demonstrate the applicability of the proposed system through the successful measurement of the basal values of Ca, Mg, Cu, Zn, and Mn in the ECF of a living rat brain and through in vivo monitoring of the concentration profiles of Mn and Pt in the ECF after the injection of drugs (MnCl2 and cisplatin) into the rats. This microdialysis system is the first to offer real-time, in vivo monitoring of trace elements such as Ca and Mg.  相似文献   

17.
环境监测、食品工业、临床、制药等领域对过氧化氢(H_2O_2)的快速、准确检测有极大的需求,而电化学检测方法由于灵敏度高、响应快、检测限低等特点被认为是最理想的H_2O_2检测方法.本文利用电化学沉积的方法将Pd纳米颗粒沉积到四氧化三铁/石墨烯(Fe_3O_4/rGO)纳米复合材料修饰的玻碳电极表面,形成基于新型磁性纳米复合材料的H_2O_2无酶传感器;并采用循环伏安和计时安培电流等方法对修饰电极的电化学性能进行了表征.结果表明:制备的Pd/Fe_3O_4/r GO/GCE对H_2O_2的催化还原显示出较好的电催化活性,Pd纳米颗粒和Fe_3O_4/rGO在催化H_2O_2还原的过程中表现出了良好的协同作用.测定H_2O_2的线性范围为0.05~1 m M和1~2.6 m M两段,最低检测限达到3.918μM(S/N=3).并且该传感器具有较高的灵敏度和较好的重现性和抗干扰性,具有一定的实际应用价值.  相似文献   

18.
Li J  Wang J  Bachas LG 《Analytical chemistry》2002,74(14):3336-3341
Asparaginase from the hyperthermophilic microorganism Archaeoglobus fulgidus was cloned and expressed in Escherichia coli as a fusion protein with a polyhistidine tail. After heat treatment to denature most of the native E. coli proteins, the enzyme was purified by an immobilized metal ion affinity chromatography method. The activity of the enzyme was determined by monitoring the change in ammonium concentration in solution. It was found that the enzyme is thermostable at temperatures as high as 85 degrees C. The KM for L-asparagine was 8 x 10(-5) and 5 x 10(-6) M at 37 and 70 degrees C, respectively. The catalytic activity for L-asparagine was 5-fold higher than for D-asparagine. The enzyme was immobilized in front of an ammonium-selective electrode and used to develop a biosensor for asparagine. The biosensor had a detection limit of 6 x 10(-5) M for L-asparagine. Unlike a sensor based on asparaginase from E. coli, the biosensor based on recombinant asparaginase from A. fulgidus demonstrated higher stability.  相似文献   

19.
Real-time monitoring of lactate release from brain slices has been studied with an optical two-dimensional (2D) imaging biosensor. The 2D biosensor is prepared by direct immobilization of lactate dehydrogenase (LDH) molecules onto a flat silica glass surface through a covalent binding mechanism. The biosensor is able to spatially differentiate lactate concentration variations with conventional optical microscopic spatial resolution. This biosensor has the capability to effectively detect lactate down to a concentration of 100 nM. The 2D biosensor responds uniformly with 2.5% RSD from pixel to pixel. With a 100 ms response time, this 2D biosensor has the capability of monitoring simultaneously many cells in one image. We have studied the impact of KCI on lactate release from brain slices. Clear differences have been observed in lactate release for different regions of the tissue. The real-time determination of the newly released lactate from the mouse brain slices clearly demonstrates the feasibility of monitoring lactate release from living specimens. The 2D biosensor will enable us to study cellular communications and possibly other biological processes that require simultaneous temporal and spatial resolution.  相似文献   

20.
This new biosensor for protein determination is based on a possibility of translation of either a proton or hydroxyl ion arising during protein hydrolysis in the presence of trypsin by means of ion selective field effect transistor (ISFET). The conditions of trypsin immobilization and main biosensor characteristics were optimized using hydrolysis reaction of nalpha-benzoyl-l-arginine ethyl ester hydrochloride (BAEE). The trypsin was immobilized on the ISFET surface using a co-reticulation process between the enzyme and BSA (4% trypsin, 6% BSA) in saturated glutaraldehyde vapour. The limit of detection of BAEE with this biosensor is 0.5 mM with a linear dynamics range from 0.5 to 5 mM, and sensitivity is about 6 mV/mM. The time of biosensor response was 5–7 min.The possibility of the application of developed biosensor for detection of small penta-peptide, which is used in some cosmetic products, has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号