首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The European Space Agency will launch the Atmospheric Laser Doppler Instrument (ALADIN) for global wind profile observations in the near future. The potential of ALADIN to measure the optical properties of aerosol and cirrus, as well, is investigated based on simulations. A comprehensive data analysis scheme is developed that includes (a) the correction of Doppler-shifted particle backscatter interference in the molecular backscatter channels (cross-talk effect), (b) a procedure that allows us to check the quality of the cross-talk correction, and (c) the procedures for the independent retrieval of profiles of the volume extinction and backscatter coefficients of particles considering the height-dependent ALADIN signal resolution. The error analysis shows that the particle backscatter and extinction coefficients, and the corresponding extinction-to-backscatter ratio (lidar ratio), can be obtained with an overall (systematic+statistical) error of 10%-15%, 15%-30%, and 20%-35%, respectively, in tropospheric aerosol and dust layers with extinction values from 50 to 200 Mm(-1); 700-shot averaging (50 km horizontal resolution) is required. Vertical signal resolution is 500 m in the lower troposphere and 1000 m in the free troposphere. In cirrus characterized by extinction coefficients of 200 Mm(-1) and an optical depth of >0.2, backscatter coefficients, optical depth, and column lidar ratios can be obtained with 25%-35% relative uncertainty and a horizontal resolution of 10 km (140 shots). In the stratosphere, only the backscatter coefficient of aerosol layers and polar stratospheric clouds can be retrieved with an acceptable uncertainty of 15%-30%. Vertical resolution is 2000 m.  相似文献   

2.
M Adam 《Applied optics》2012,51(19):4491-4500
This study compares the aerosol backscatter and extinction coefficients retrieved from vertical elastic and Raman channels with those derived from measurements with multiangle elastic channels. Retrievals from simulated vertical signals at 355 nm, 387 nm, 532 nm, and 607 nm are compared with those from multiangle measurements (at 15 elevation angles) at 355 nm and 532 nm. The atmosphere is considered horizontally homogeneously stratified. For the backscatter coefficient, the Raman backscatter solution and the multiangle solution are considered. For the extinction coefficient, retrievals from the Raman channel and multiangle measurements are compared. The comparison shows that in the presence of horizontal homogeneity, multiangle measurements provide more reliable results, especially for the aerosol extinction coefficient. The uncertainty in the measured signals is considered in an alternative approach to quantify the relative error of the retrieved profiles with respect to the models (linear regression between retrieval and model).  相似文献   

3.
The hybrid regularization technique developed at the Institute of Mathematics of Potsdam University (IMP) is used to derive microphysical properties such as effective radius, surface-area concentration, and volume concentration, as well as the single-scattering albedo and a mean complex refractive index, from multiwavelength lidar measurements. We present the continuation of investigations of the IMP method. Theoretical studies of the degree of ill-posedness of the underlying model, simulation results with respect to the analysis of the retrieval error of microphysical particle properties from multiwavelength lidar data, and a comparison of results for different numbers of backscatter and extinction coefficients are presented. Our analysis shows that the backscatter operator has a smaller degree of ill-posedness than the operator for extinction. This fact underlines the importance of backscatter data. Moreover, the degree of ill-posedness increases with increasing particle absorption, i.e., depends on the imaginary part of the refractive index and does not depend significantly on the real part. Furthermore, an extensive simulation study was carried out for logarithmic-normal size distributions with different median radii, mode widths, and real and imaginary parts of refractive indices. The errors of the retrieved particle properties obtained from the inversion of three backscatter (355, 532, and 1064 nm) and two extinction (355 and 532 nm) coefficients were compared with the uncertainties for the case of six backscatter (400, 710, 800 nm, additionally) and the same two extinction coefficients. For known complex refractive index and up to 20% normally distributed noise, we found that the retrieval errors for effective radius, surface-area concentration, and volume concentration stay below approximately 15% in both cases. Simulations were also made with unknown complex refractive index. In that case the integrated parameters stay below approximately 30%, and the imaginary part of the refractive index stays below 35% for input noise up to 10% in both cases. In general, the quality of the retrieved aerosol parameters depends strongly on the imaginary part owing to the degree of ill-posedness. It is shown that under certain constraints a minimum data set of three backscatter coefficients and two extinction coefficients is sufficient for a successful inversion. The IMP algorithm was finally tested for a measurement case.  相似文献   

4.
We present an inversion algorithm for the retrieval of particle size distribution parameters, i.e., mean (effective) radius, number, surface area, and volume concentration, and complex refractive index from multiwavelength lidar data. In contrast to the classical Tikhonov method, which accepts only that solution for which the discrepancy reaches its global minimum, in our algorithm we perform the averaging of solutions in the vicinity of this minimum. This averaging stabilizes the underlying ill-posed inverse problem, particularly with respect to the retrieval of number concentration. Results show that, for typical tropospheric particles and 10% error in the optical data, the mean radius could be retrieved to better than 20% from a lidar on the basis of a Nd:YAG laser, which provides a combination of backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The accuracy is improved if the lidar is also equipped with a hydrogen Raman shifter. In this case two additional backscatter coefficients at 416 and 683 nm are available. The combination of two extinction coefficients and five backscatter coefficients then allows one to retrieve not only averaged aerosol parameters but also the size distribution function. There was acceptable agreement between physical particle properties obtained from the evaluation of multiwavelength lidar data taken during the Lindenberg Aerosol Characterization Experiment in 1998 (LACE 98) and in situ data, which were taken aboard aircraft.  相似文献   

5.
Herman BR  Gross B  Moshary F  Ahmed S 《Applied optics》2005,44(30):6462-6473
In applying the graphical technique to the estimation of the particle size distribution (PSD) parameters, determination of proper bounds surrounding the solution space for a particular confidence level is essential to the consistent intercomparison of diverse multiwavelength lidar optical data sets. The graphical technique utilizes ratios of backscatter and/or extinction coefficients, and it is shown that if the correlation between ratios is not taken into account in calculating the error bounds, the solution space will be overestimated, resulting in relatively larger discrepancies for a larger number of optical coefficients. A method for correcting the bounds, to account for the correlation is developed for various numbers of wavelengths. These improved bounds are then applied, for the case of a monomodal lognormal PSD, with an assumed refractive index, to assess the role additional Raman extinction channels play in improving retrieval capability of a typical three-channel backscatter lidar (1064, 532, and 355 nm) under varying noise levels. Applying the same formalism to underlying bimodal distributions of coarse and fine particles can result in false monomodal solutions. However, when both Raman optical extinction channels are available, no solution is obtained. This can potentially serve as a quick and simple method, prior to a more complex regularization analysis, to differentiate between cases in which the fine mode is dominant versus the cases in which the contribution from the coarse mode is significant.  相似文献   

6.
Yue GK 《Applied optics》2000,39(30):5446-5455
A new approach for retrieving aerosol properties from extinction spectra is extended to retrieve aerosol properties from lidar backscatter measurements. In this method it is assumed that aerosol properties are expressed as a linear combination of backscatters at three or fewer wavelengths commonly used in lidar measurements. The coefficients in the weighted linear combination are obtained by minimization of the retrieval error averaged for a set of testing size distributions. The formulas can be used easily by investigators to retrieve aerosol properties from lidar backscatter measurements such as the Lidar In-Space Technology Experiment and Pathfinder Instruments for Clouds and Aerosols Spaceborne Observations.  相似文献   

7.
A method is proposed that permits one to retrieve physical parameters of tropospheric particle size distributions, e.g., effective radius, volume, surface-area, and number concentrations, as well as the mean complex refractive index on a routine basis from backscatter and extinction coefficients at multiple wavelengths. The optical data in terms of vertical profiles are derived from multiple-wavelength lidar measurements at 355, 400, 532, 710, 800, and 1064 nm for backscatter data and 355 and 532 nm for extinction data. The algorithm is based on the concept of inversion with regularization. Regularization is performed by generalized cross-validation. This method does not require knowledge of the shape of the particle size distribution and can handle measurement errors of the order of 20%. It is shown that at least two extinction data are necessary to retrieve the particle parameters to an acceptable accuracy. Simulations with monomodal and bimodal logarithmic-normal size distributions show that it is possible to derive effective radius, volume, and surface-area concentrations to an accuracy of +/-50%, the real part of the complex refractive index to +/-0.05, and the imaginary part to +/-50%. Number concentrations may have errors larger than +/-50%.  相似文献   

8.
A sensitivity study with an inversion scheme that permits one to retrieve physical parameters of tropospheric particle size distributions, e.g., effective radius, volume, surface-area, and number concentrations, as well as the mean complex refractive index from backscatter and extinction coefficients at multiple wavelengths is presented. The optical data for the analysis are derived from Mie-scattering calculations for monomodal and bimodal logarithmic-normal distributions in the particle size range between 0.01 and 10 microm. The complex refractive index is taken between 1.33 and 1.8 in the real part and between 0 and 0.1 in the imaginary part. The choice of these parameters takes account of properties of optically active atmospheric particles. The wavelengths were chosen at 355, 400, 532, 710, 800, and 1064 nm for the backscatter and at 355 and 532 nm for the extinction data, which are the available wavelengths of the two lidar systems at the Institute for Tropospheric Research. Cases of erroneous optical data of the order of as much as 20%, an unknown refractive index, which may also be wavelength and size dependent, as well as the a priori unknown modality of the particle size distribution were considered. It is shown that both extinction channels are necessary for determining the above-mentioned parameters within reasonable limits, i.e., effective radius, surface-area, and volume concentrations to an accuracy of +/-50%, the real part of the complex refractive index to +/-0.1, and the imaginary part to +/-50%. The number concentration may have errors larger than 50%. The overall performance of the inversion scheme permits the evaluation of experimental data on a routine basis.  相似文献   

9.
10.
Laser radar (lidar) can be used to estimate atmospheric extinction coefficients that are due to aerosols if the ratio between optical extinction and 180 degrees backscatter (the lidar ratio) at the laser wavelength is known or if Raman or high spectral resolution data are available. Most lidar instruments, however, do not have Raman or high spectral resolution capability, which makes knowledge of the lidar ratio essential. We have modified an integrating nephelometer, which measures the scattering component of light extinction, by addition of a backward-pointing laser light source such that the detected light corresponds to integrated scattering over 176-178 degrees at a common lidar wavelength of 532 nm. Mie calculations indicate that the detected quantity is an excellent proxy for 180 degrees backscatter. When combined with existing techniques for measuring total scattering and absorption by particles, the new device permits a direct determination of the lidar ratio. A four-point calibration, run by filling the enclosed sample volume with particle-free gases of a known scattering coefficient, indicates a linear response and calibration reproducibility to within 4%. The instrument has a detection limit of 1.5 x 10(-7) m(-1) sr(-1) (~10% of Rayleigh scattering by air at STP) for a 5-min average and is suitable for ground and mobile/airborne surveys. Initial field measurements yielded a lidar ratio of ~20 for marine aerosols and ~60-70 for continental aerosols, with an uncertainty of ~20%.  相似文献   

11.
A numerical model is used to investigate the dependence at 351 nm of desert-aerosol extinction and backscatter coefficients on particle imaginary refractive index (mi). Three ranges (-0.005 < or = mi < or = -0.001, -0.01 < or = mi < or = -0.001, and -0.02 < or = mi < or = -0.001) are considered, showing that backscatter coefficients are reduced as /mi/ increases, whereas extinction coefficients are weakly dependent on mi. Numerical results are compared with extinction and backscatter coefficients retrieved by elastic Raman lidar measurements performed during Saharan dust storms over the Mediterranean Sea. The comparison indicates that a range of -0.01 to -0.001 can be representative of Saharan dust aerosols and that the nonsphericity of mineral particles must be considered.  相似文献   

12.
Imaki M  Kobayashi T 《Applied optics》2005,44(28):6023-6030
An ultraviolet incoherent Doppler lidar that incorporates the high-spectral-resolution (HSR) technique has been developed for measuring the wind field and aerosol optical properties in the troposphere. An injection seeded and tripled Nd:YAG laser at an ultraviolet wavelength of 355 nm was used in the lidar system. The HRS technique can resolve the aerosol Mie backscatter and the molecular Rayleigh backscatter to derive the signal components. By detecting the Mie backscatter, a great increase in the Doppler filter sensitivity was realized compared to the conventional incoherent Doppler lidars that detected the Rayleigh backscatter. The wind velocity distribution in a two-dimensional cross section was measured. By using the HSR technique, multifunction and absolute value measurements were realized for aerosol extinction, and volume backscatter coefficients; the laser beam transmittance, the lidar ratio, and the backscatter ratio are derived from these measurements.  相似文献   

13.
A variational method for retrieving the aerosol optical thickness and backscatter coefficient profiles from multiangle lidar measurements is presented and discussed. A monostatic single-wavelength low-energy lidar system was operated at different zenith angles during the Indian Ocean Experiment (INDOEX) campaign in 1999 to characterize the aerosol plumes in the Indian monsoon. The variational method was applied to lidar data to retrieve profiles of optical thickness and the backscatter coefficient for nighttime and daytime measurements. Results are obtained with an uncertainty of 10% below 3 km (nighttime) and 2.8 km (daytime) and a bias of less than 0.01. During daytime the retrieval of optical parameters is indeed limited to a lower altitude owing to the sky background signal and the atmospheric inhomogeneity. In both cases the total aerosol optical thickness is consistent (+/- 10%) with the integrated value derived from sunphotometer measurements. Backscatter-to-extinction ratios estimated in different regions by two distinct methods compared well, which proves the capability of the method to assess optical measurements and account for the altitude dependence of the phase function.  相似文献   

14.
We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to approximately 10 microm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of approximately 50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of < 1 microm the real part of the complex refractive index was retrieved to an accuracy of +/- 0.05, the imaginary part was retrieved to 50% uncertainty. Simulations dealing with a mode-dependent complex refractive index showed that an average complex refractive index is derived that lies between the values for the two individual modes. Thus it becomes possible to investigate external mixtures of particle size distributions, which, for example, might be present along continental rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.  相似文献   

15.
Eisele H  Trickl T 《Applied optics》2005,44(13):2638-2651
The differential absorption lidar (DIAL) at the Institut für Meteorologie und Klimaforschung has been upgraded for precise ozone and aerosol studies in the entire troposphere and the lower stratosphere. Its excellent technical performance offers the opportunity to apply improved data processing. The existing inversion algorithm is extended to derive the optical coefficients from the backscatter profiles for three wavelengths. Correlating the correction terms of the DIAL equation and the ozone concentration yields the wavelength dependence of the backscatter and extinction coefficients of the aerosol. Under some conditions, in particular if homogeneous layers are present, the backscatter-to-extinction ratio and the reference value can also be retrieved. We find the solutions by applying evolutionary strategies. From the optical coefficients obtained in this way the ozone concentration can be calculated with substantially reduced error.  相似文献   

16.
The potential to estimate solar aerosol radiative forcing (SARF) in cloudless conditions from backscatter data measured by widespread standard lidar has been investigated. For this purpose 132 days of sophisticated ground-based Raman lidar observations (profiles of particle extinction and backscatter coefficients at 532 nm wavelength) collected during two campaigns [the European Aerosol Research Lidar Network (EARLINET) and the Indian Ocean Experiment (INDOEX)] were analyzed. Particle extinction profiles were used as input for radiative transfer simulations with which to calculate the SARF, which then was plotted as a function of the column (i.e., height-integrated) particle backscatter coefficient (beta(c)). A close correlation between the SARF and beta(c) was found. SARF-beta(c) parameterizations in the form of polynomial fits were derived that exhibit an estimated uncertainty of +/-(10-30)%. These parameterizations can be utilized to analyze data of upcoming lidar satellite missions and for other purposes. The EARLINET-based parameterizations can be applied to lidar measurements at mostly continental, highly industrialized sites with limited maritime influence (Europe, North America), whereas the INDOEX parameterizations rather can be employed in polluted maritime locations, e.g., coastal regions of south and east Asia.  相似文献   

17.
To develop a deeper understanding of the optical signatures of both biological aerosols and potential interferents, we made field measurements of optical cross sections and compared them to model-based predictions. We measured aerosol cross sections by conducting a hard-target calibration of a light detection and ranging system (LIDAR) based on the Frequency Agile Laser (FAL). The elastic backscatter cross sections are estimated at 19 long-wave infrared (LWIR) wavelengths spanning the range from 9.23 to 10.696 μm. The theoretical modeling of the elastic backscatter cross sections is based on the measured refractive index and size distribution of the aerosols, which are used as inputs into Mie calculations. Both model calculations and experimental measurements show good agreement and also indicate the presence of spectral features based on single particle absorption in the backscatter cross sections that can be used as a basis for discrimination for both standoff and point sensors.  相似文献   

18.
Repetitive genetic inversion of optical extinction data   总被引:1,自引:0,他引:1  
Lienert BR  Porter JN  Sharma SK 《Applied optics》2001,40(21):3476-3482
We describe a genetic method of deriving aerosol size distributions from multiwavelength extinction measurements. The genetic inversion searches for log-normal size distribution parameters whose calculated extinctions best fit the data. By repetitively applying the genetic inversion using different random number seeds, we are able to generate multiple solutions that fit the data equally well. When these solutions are similar, they lend confidence to an interpretation, whereas when they vary widely, they demonstrate nonuniqueness. In this way we show that, even in the case of a single log-normal distribution, many different distributions can fit the same set of extinction data unless the misfit is reduced below typical measurement error levels. In the case of a bimodal distribution, we find many dissimilar size distributions that fit the data to within 1% at six wavelengths. To recover the original bimodal distribution satisfactorily, we found that extinctions at ten wavelengths must be fitted to within 0.5%. Our results imply that many size distributions recovered from existing extinction measurements can be highly nonunique and should be treated with caution.  相似文献   

19.
The Jungfraujoch Research Station (46.55 degrees N, 7.98 degrees E, 3580 m above sea level) for decades has contributed in a significant manner to the systematic observation of the Earth's atmosphere both with in situ measurements and with trace gas column detection. We report on the development of a lidar system that improves the measurement potential of highly resolved atmospheric parameters in both time and space, with the goal of achieving long-term monitoring of atmospheric aerosol optical properties and water-vapor content. From the simultaneously detected elastic-backscatter signals at 355, 532, and 1064 nm, Raman signals from nitrogen at 387 and 607 nm, and water vapor at 408 nm, the aerosol extinction and backscatter coefficients at three wavelengths and a water-vapor mixing ratio are derived. Additional information about particle shape is obtained by depolarization measurements at 532 nm. Water-vapor measurements by use of both nitrogen and water-vapor Raman returns from the 355-nm laser beam are demonstrated with a vertical range resolution of 75 m and an integration time of 2 h. The comparison to the water-vapor profile derived from balloon measurements (Snow White technique) showed excellent agreement. The system design and the results obtained by its operation are reported.  相似文献   

20.
Kovalev VA  Hao WM  Wold C 《Applied optics》2007,46(36):8627-8634
A new method is considered that can be used for inverting data obtained from a combined elastic-inelastic lidar or a high spectral resolution lidar operating in a one-directional mode, or an elastic lidar operating in a multiangle mode. The particulate extinction coefficient is retrieved from the simultaneously measured profiles of the particulate backscatter coefficient and the particulate optical depth. The stepwise profile of the column-integrated lidar ratio is found that provides best matching of the initial (inverted) profile of the optical depth to that obtained by the inversion of the backscatter-coefficient profile. The retrieval of the extinction coefficient is made without using numerical differentiation. The method reduces the level of random noise in the retrieved extinction coefficient to the level of noise in the inverted backscatter coefficient. Examples of simulated and experimental data are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号