首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A novel methodology for the on-line diagnosis of PEMFC, intended to be used in portable control systems, is proposed. First, an equivalent-circuit model for PEMFC is proposed. This model has a low computational cost and it allows reproducing the dynamic behavior of the PEMFC. The relationship among the parameters of this simplified model and PEMFC electrochemical parameters is stated. Secondly, a procedure to estimate all the parameters of this model from the cell’s transient response after current interruption (CI) is proposed. The equipment required to make these CI measurements is easily portable and inexpensive. Thirdly, the procedure to calculate some relevant PEMFC electrochemical parameters from the equivalent-circuit parameters is discussed. These PEMFC parameters are the double layer capacitance, the diffusion resistance, the charge transfer resistance, the diffusion-related time constant, and the membrane resistance. Finally, this PEMFC assessment methodology is applied to the diagnosis of the cathode flooding. The diffusion resistance is found to have a dominant effect on the amount of water accumulated inside the cell. The described methodology can be used to characterize other phenomena, including the cathode and membrane drying, the membrane degradation, and the anode poisoning by carbon monoxide.  相似文献   

2.
The damage caused by cell reversal during proton exchange membrane fuel cell (PEMFC) operation with fuel starvation was investigated by a single cell experiment. The samples from degraded membrane–electrode assemblies (MEAs) were characterized. Chemical analysis of the anode catalyst layer of MEA samples by energy dispersive X-ray analysis (EDX) clearly showed ruthenium dissolution from the anode catalyst particles. Severe ruthenium loss was observed especially in the fuel outlet region. A reduced carbon monoxide (CO) tolerance was found by CO stripping voltammetry and measurement of deteriorated the fuel cell performance. Surface area loss of the cathode platinum by sintering was also detected by transmission electron microscopy (TEM) analysis and cyclic voltammetry.  相似文献   

3.
This work deals with a diagnosis of cathode flooding and membrane drying associated with a low frequency ripple current of a polymer electrolyte membrane fuel cell (PEMFC) based on impedance measurement on 12 single cells using electrochemical impedance spectroscopy (EIS). Average values of the identified model parameters obtained from direct measurement of the impedance curves of 12 single cells obtained after cycling for hours at variable frequencies, it has been found that impedance magnitude of a fuel cell injecting a low frequency ripple current (100 Hz) increased when compared with those injecting high frequency ripple currents (1 kHz and 10 kHz). Based on these investigations, additional impedance measurements are directly conducted to gain insight into cathode flooding and membrane drying concerning a low frequency ripple current. Regardless of operating frequency of ripple current, two PEMFC failures lead to an increase in the impedance magnitude in comparison with that of a fresh cell. Specifically, it is shown that a low frequency ripple current more accelerates the PEMFC degradation associated with two PEMFC failures.  相似文献   

4.
A previously published computational multi-phase model of a polymer-electrolyte membrane fuel cell cathode has been extended in order to account for the anode side and the electrolyte membrane. The model has been applied to study the water balance of a fuel cell during operation under various humidification conditions. It was found that the specific surface area of the electrolyte in the catalyst layers close to the membrane is of critical importance for the overall water balance. Applying a high specific electrolyte surface area close to the membrane (a water-uptake layer) can prevent drying out of the anode and flooding at the cathode while the average membrane water content is only weakly affected. The results also indicate that in contrast to common presumption membrane dehydration may occur at either anode or cathode side, entirely depending on the direction of the net water transport because the predominant transport mechanism is diffusion. Consequently, operating conditions with a high net water transport from anode to cathode should be avoided as it is important to keep the cathode catalyst layer well humidified in order to prevent high protonic losses. Addition of the micro-porous layer did not affect the overall water balance or membrane water content in our study.  相似文献   

5.
The paper describes an experimental analysis on the effect of cathode flow stoichiometry on the electrical performance of a PEMFC stack. The electrical power output of a PEMFC stack is influenced by several independent variables (factors). In order to analyse their reciprocal influence, an experimental design methodology was adopted in a previous experimental session, to determine which factors deserve particular attention. In this work, a further experimental analysis has been carried out on a very significant factor: cathode stoichiometry. Its effects on the electrical power of the PEMFC stack have been investigated. The tests were performed on a 3.5 kWel ZSW stack using the GreenLight GEN VI FC Test Station. The stack characteristics have been obtained running a predefined loading pattern. Some parameters were kept constant during the tests: anode and cathode inlet temperature, anode and cathode inlet relative humidity, anode stoichiometry and inlet temperature of the cooling water. The experimental analysis has shown that an increase in air stoichiometry causes a significant positive effect (increment) on electric power, especially at high-current density, and up to the value of 2 stoichs. These results have been connected to the cathode water flooding, and a discussion was performed concerning the influence of air stoichiometry on electrode flooding at different levels of current density operation.  相似文献   

6.
《Journal of power sources》2002,111(2):239-247
Even trace amounts of CO in the fuel for a proton-exchange membrane fuel cell (PEMFC) could poison not only the anode, which is directly exposed to the fuel, but also the cathode, which is separated from the fuel by a proton-exchange membrane; and the performance decline of the cathode is sometimes more than that of the anode. Adsorption of CO on the cathode catalyst has been detected electrochemically, and this indicates that CO can pass through the membrane to reach the cathode. To reduce such a poisoning effect, fuel cell operation conditions (e.g. level of membrane humidification, gas pressure difference between cathode and anode), membrane and catalyst layer structures, and CO-tolerant cathode catalysts should be further explored.  相似文献   

7.
The present paper proposes a new 2D modelling of ac impedance spectra of polymer electrolyte fuel cells (PEMFC). The computational domain includes the Membrane Electrode Assembly, the Gas Diffusion Layers and the channels on both the anode and cathode sides. The model takes into account the main fuel cell phenomena, i.e. reactants, charges transport and transfer and electrochemical reactions. First, the partial differential equations are solved in the steady state regime, then in the frequency domain in order to obtain the cell dynamic behaviour at different potentials. Experimental PEMFC impedance spectra are satisfactory reproduced over a relative large potentials range using only one set of model parameters. Numerical analysis of the key model parameters linked to the cell flooding state has been done. It is concluded that at least two impedance spectra at low and high potential are needed in order to discriminate the nature and the location of the cell degradations (anode or cathode, electrode or GDL). Based on a least square criterion, the model inversion is presented and several cell flooding scenarios have been precisely identified.  相似文献   

8.
The effect of air purging and dry operation on durability of polymer electrolyte membrane fuel cell (PEMFC) under repeated freeze/thaw cycles between −20 °C and 60 °C was investigated. The cathode air purging and the operation with dry air feed were highly effective to mitigate freeze damage. The removal of the air purging of the anode compartment did not lead to the degradation of the anode catalyst layer. It is of practical importance, because the air purging of the anode could cause carbon corrosion of the cathode. The performance degradation by the freeze/thaw cycles was associated with the increased charge transfer and mass transfer resistances. After the freeze/thaw cycles, any discernable morphological changes were not observed in the scanning electron microscopic images of the anode, the membrane and the membrane/electrode interface, however, mechanical damage of the poly(tetrafluoroethylene) phases in the cathode diffusion layer was detected.  相似文献   

9.
《Journal of power sources》2006,156(2):211-223
A computational fuel cell dynamics framework is used to develop a unified water transport equation for a proton exchange membrane fuel cell (PEMFC). Various modes of water transport, i.e., diffusion, convection and electro-osmotic drag, are incorporated in the unified water transport equation. The water transport model is then applied to elucidate water management in three-dimensional fuel cells with dry-to-low humidified inlet gases after its validation against available experimental data for dry oxidant and fuel streams. An internal circulation of water with the aid of counter-flow design is found to be of vital importance for low-humidity operation, for example, in the portable application of a PEMFC without an external humidifier. The general features of water transport in PEMFCs are discussed to show various water transport regimes of practical interest, such as anode water loss, cathode flooding, and the equilibrium condition of water at the channel outlets, particularly for limiting situations where anode and cathode water profiles acquire an equilibrium state. From the practical point of view, the effects of the flow arrangement, membrane thickness, and inlet gas humidity as important determinants of fuel cell performance are also analyzed to elucidate fuel cell water transport characteristics.  相似文献   

10.
A three‐dimensional and two‐phase numerical model is developed for a 25‐cm2 proton exchange membrane fuel cell (PEMFC) to investigate the effects of flow mode (coflow and counterflow) and relative humidity (anode 0%/100%; cathode 60%/100%) on the cell performance. Experimental studies are performed to validate this developed model. An equivalent membrane conductivity is proposed to describe the match level between current flux and membrane conductivity. It is found that the cell performance is enhanced under low relative humidity conditions because of the optimized equivalent membrane conductivity. More specifically, the voltage is improved from 0.611 to 0.637 V, and the equivalent membrane conductivity is enhanced from 10.35 to 11.11 S m?1 by replacing the coflow mode with counterflow mode at 1000 mA cm?2 when anode gas is dry and cathode gas is 100% hydrated. Both the anode and cathode relative humidities show an obvious influence on the PEMFC performance, and a suitable inlet humidity could ensure adequate hydration of membrane and avoid water flooding in gas diffusion layers simultaneously.  相似文献   

11.
Water management is critical for Proton Exchange Membrane Fuel Cells (PEMFC). An appropriate humidity condition not only can improve the performances and efficiency of the fuel cell, but can also prevent irreversible degradation of internal composition such as the catalyst or the membrane. In this paper we built the model of water management systems which consist of stack voltage model, water balance equation in anode and cathode, and water transport process in membrane. Based on this model, model predictive control mechanism was proposed by utilizing Recurrent Neural Network (RNN) optimization. The models and model predictive controller have been implemented in the MATLAB and SIMULINK environment. Simulation results showed that this approach can avoid fluctuation of water concentration in cathode and can extend the lifetime of PEM fuel cell stack.  相似文献   

12.
The present study aims to examine the effect of nitrogen and carbon monoxide concentrations as well as the working temperature and the stoichiometry number on the performance of a self-made five-cell high-temperature Proton-exchange membrane fuel cell stack (PEMFC). The concentration of hydrogen in a reformed gas can be varied, and it may contain poisonous substances such as carbon monoxide. Hence, the composition of the fuel gas could affect the performance of the PEMFC. The polarization curve and the electrochemical impedance spectrogram are utilized to examine the behaviors of PEMFC. The cell temperature of 160 °C is found as an optimal working temperature in this study for high-temperature PEMFC. Measured results show that the stoichiometry of the anode gas has a minimal effect on the PEMFC performance. A high percentage of nitrogen makes hydrogen dilute and leads to poor cell performance. When carbon dioxide exceeds 3%, the pt-catalyst was covered with the CO and the cell performance significantly decreased. Finally, a raise of the PEMFC temperature boosted the catalyst energy and improved the detachment of the carbon monoxide and eventually enhanced carbon monoxide tolerance.  相似文献   

13.
This paper describes the performance of a polymer electrolyte membrane fuel cell (PEMFC) system without humidification of the reactants which consumes a lot of parasitic power, increases the weight of the PEMFC system and thus adds complexity. Such PEMFC systems are preferable for portable applications. The results indicate that dry gas operation depends on various factors like reactant flow field design, area of the electrode and equilibration time for the product water. The performance of the fuel cell can be improved by giving some equilibration time for the product water, produced by the electrochemical reactions, to get transported across the membrane to the anode side, thus increasing the conductivity of the membrane. The water transported through the membrane across the cell was investigated by measuring the amount of product water at the anode side which allows humidification for the anode gas and less condensed water in the fluid flow channels of the cathode.  相似文献   

14.
This study examines the effect of hydrogen peroxide (H2O2) on the open-circuit voltage (OCV) of a proton exchange membrane fuel cell (PEMFC) and the reduction of H2O2 in the membrane using a ruthenium/carbon catalyst (Ru/C) at the anode. Each cathode and anode potential of the PEMFC in the presence of H2O2 is examined by constructing a half-cell using 1.0 M H2SO4 solution as an electrolyte and Ag/AgCl as the reference electrode. H2O2 is added to the H2SO4 solution and the half-cell potential is measured at each H2O2 concentration. The cathode potential is affected by the H2O2 concentration while the anode potential remains stable. A Ru catalyst is used to reduce the level of H2O2 formation through O2 cross-over at the interface of a membrane and the anode. The Ru catalyst is known to produce less H2O2 through oxygen reduction at the anode of PEMFC than a Pt catalyst. A Ru/C layer is placed between the Nafion® 112 membrane and anode catalyst layer and the cell voltage under open-circuit condition is measured. A single cell is constructed to compare the OCV of the Pt/C only anode with that of the Ru/C-layered anode. The level of hydrogen cross-over and the OCV are determined after operation at a current density of 1 A cm−2 for 10 h and stabilization at open-circuit for 1 h to obtain an equilibrium state in the cell. Although there is an increase in the OCV of the cell with the Ru/C layer at the anode, excessive addition of Ru/C has an adverse effect on cell performance.  相似文献   

15.
Steady-state and three-dimensional simulations were carried out to study the influences of geometrical parameters on the performance of PEMFC under different hydrating conditions. Flow fields, species transport, transport of water in polymer membrane and movement of liquid water in cathode and anode porous layers were determined, in order to accomplish a complete estimation of ohmic and concentration losses of PEMFC power. The geometrical parameters were thickness of the polymer membrane, cathode catalyst layer as well as gas channel to rib width ratio. Every simulation was made under different relative humidities of inlet flows (50 and 100%) for every change of characteristic length. Results show that the influence of the geometrical parameters on ohmic and concentration losses is of considerable importance. The performance of PEMFC is seriously affected under dehydrating conditions. However, such performance may be considerably improved by using suitable geometrical parameters. Cathode and anode liquid saturation may not only affect the transport of species, but also the polymer electrolyte water content. These results show the importance of simultaneously calculating both the water absorption and desorption through the polymer electrolyte and the liquid saturation in the cathode and anode porous mediums to obtain an actual view of ohmic and concentration losses of the PEMFC performance.  相似文献   

16.
A two-phase flow process model for the gas diffusion layer (GDL) of a polymer electrolyte membrane fuel cell, considering also the cathode catalyst layer (CL), is presented. For this purpose, a systematic analysis of the factors affecting flooding and drying, including the liquid accumulation in the gas channel (CH), was performed using a one-dimensional reference model for the GDL and a compact channel model. The treatment proposed for the CH-GDL interface was compared with other boundary conditions in the literature. It was concluded that the liquid accumulation in the channel is determinant for estimating the steady state and transient GDL flooding, but that predicting the saturation level in the CL can help for determining operation policies for precluding flooding in the GDL-CL composite, in the absence of an adequate channel model. Bifurcation behavior, associated with the water phase change, was identified by means of the compact model.  相似文献   

17.
The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm2. The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during start-up process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation.  相似文献   

18.
19.
A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect operation conditions (current density, pressure and water content) on the water transport, ohmic resistance and water distribution in the membrane and performance of PEMFC. This model considers the transport of species and water along the porous media: gas diffusion layers (GDL) anode and cathode, and the membrane of PEMFC fuel cell.  相似文献   

20.
An understanding of the potentially serious performance degradation effects that trace level contaminants can cause in proton exchange membrane fuel cells (PEMFCs) is crucial for the successful deployment of PEMFC for commercial applications. An experimental and analytic methodology is described that employs gas chromatography (GC) to accurately determine the concentration of impurity species in the fuel and oxidant streams of a PEMFC. In this paper we further show that the accurate determination of the contaminant concentrations at the anode and cathode inlets and outlets provides a means to quantify reactions of contaminants within the cell and to identify diffusive mass transport across the membrane. High data accuracy down to sub-ppm contaminant levels is required and was achieved by addressing several challenges pertaining to experimental setup and data analysis which are both discussed in detail. The application of the methodology is demonstrated using carbon monoxide and toluene which were injected into the cell at concentrations between 1 and 10 ppm and 20 and 60 ppm, respectively. Both impurities were observed to react in the fuel cell: carbon monoxide to carbon dioxide, and toluene to methylcyclohexane. For both contaminants closure of the molar flow balances to within 3% was achieved even at the low contaminant concentrations. This allowed the extent of both reactions at the applied operating conditions to be quantified. The presented methodology is shown to be a valuable tool for investigating the effects and reactions of trace contaminants in fuel cells and for providing critical insights into the mechanisms responsible for the associated performance degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号