首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a complete control scheme to efficiently manage the operation of an autonomous wind based hydrogen production system. This system comprises a wind energy generation module based on a multipolar permanent magnet synchronous generator, a lead-acid battery bank as short term energy storage and an alkaline von Hoerner electrolyzer. The control is developed in two hierarchical levels. The higher control level or supervisor control determines the general operation strategy for the whole system according to the wind conditions and the state of charge of the battery bank. On the other hand, the lower control level includes the individual controllers that regulate the respective module operation assuming the set-points determined by the supervisor control. These last controllers are approached using second-order super-twisting sliding mode techniques. The performance of the closed-loop system is assessed through representative computer simulations.  相似文献   

2.
In this work, the technical and economical feasibility for implementing a hypothetical electrolytic hydrogen production plant, powered by electrical energy generated by alternative renewable power sources, wind and solar, and conventional hydroelectricity, was studied mainly trough the analysis of the wind and solar energy potentials for the northeast of Brazil. The hydrogen produced would be exported to countries which do not presently have significant renewable energy sources, but are willing to introduce those sources in their energy system. Hydrogen production was evaluated to be around 56.26 × 106 m3 H2/yr at a cost of 10.3 US$/kg.  相似文献   

3.
Due to the threat of climate change, renewable feedstocks & alternative energy carriers are becoming more necessary than ever. One key vector is hydrogen, which can fulfil these roles and is a renewable resource when split from water using renewable electricity. Electrolyzers are often not designed for variable operation, such as power from sources like wind or solar. This work develops a framework to optimize the design and operation of a large-scale electrolyzer hub under variable power supply. The framework is a two-part optimization, where designs of repeated, modular units are optimized, then the entire system is optimized based on those modular units. The framework is tested using a case study of an electrolyzer hub powered by a Dutch wind farm to minimize the levelized cost of hydrogen. To understand how the optimal design changes, three power profiles are examined, including a steady power supply, a representative wind farm power supply, and the same wind farm power supply compressed in time. The work finds the compressed power profile uses PEM technology which can ramp up and down more quickly. The framework determines for this case study, pressurized alkaline electrolyzers with large stacks are the cheapest modular unit, and while a steady power profile resulted in the cheapest hydrogen, costing 4.73 €/kg, the typical wind power profile only raised the levelized cost by 2%–4.82 €/kg. This framework is useful for designing large-scale electrolysis plants and understanding the impact of specific design choices on the performance of a plant.  相似文献   

4.
Three aspects of producing hydrogen via renewable electricity sources are analyzed to determine the potential for solar and wind hydrogen production pathways: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices. For renewables to produce hydrogen at $2 kg−1, using electrolyzers available in 2004, electricity prices would have to be less than $0.01 kWh−1. Additionally, energy requirements for hydrogen refueling stations are in excess of 20 GWh/year. It may be challenging for dedicated renewable systems at the filling station to meet such requirements. Therefore, while plentiful resources exist to provide clean electricity for the production of hydrogen for transportation fuel, challenges remain to identify optimum economic and technical configurations to provide renewable energy to distributed hydrogen refueling stations.  相似文献   

5.
Last years hydrogen as energy carrier becomes one of the best solutions of energy and ecological problems. Intensive development of fuel cells, especially based on proton exchange membrane (PEM), where pure hydrogen is needed, stimulates electrolyzers development for the future application in hydrogen energy and technology. From point of view of the authors PEM electrolysis is very perspective for this goal. Advantages and possible fields of applications of this type of electrolyzers in comparison with another one are reviewed. Some results achieved up to now in PEM electrolysis, including last achievement of the authors, are summarized.  相似文献   

6.
The transport sector is considered as one of the sectors producing high carbon emissions worldwide due to the use of fossil fuels. Hydrogen is a non-toxic energy carrier that could serve as a good alternative to fossil fuels. The use of hydrogen vehicles could help reduce carbon emissions thereby cutting down on greenhouse gases and environmental pollution. This could largely be achieved when hydrogen is produced from renewable energy sources and is easily accessible through a widespread network of hydrogen refuelling stations. In this study, the techno-economic assessment was performed for a wind-powered hydrogen refuelling station in seven cities of South Africa. The aim is to determine the optimum configuration of a hydrogen refuelling station powered by wind energy resources for each of the cities as well as to determine their economic viability and carbon emission reduction capability. The stations were designed to cater for 25 hydrogen vehicles every day, each with a 5 kg tank capacity. The results show that a wind-powered hydrogen refuelling station is viable in South Africa with the cost of hydrogen production ranging from 6.34 $/kg to 8.97 $/kg. These costs are competitive when compared to other costs of hydrogen production around the world. The cities located in the coastal region of South Africa are more promising for siting wind powered-hydrogen refuelling station compared to the cities located on the mainland. The hydrogen refuelling stations could reduce the CO2 and CO emissions by 73.95 tons and 0.133 tons per annum, respectively.  相似文献   

7.
In this study the influence of the nanofluid in the photovoltaic thermal system (PVT) has been examined experimentally. The nanoparticles zinc oxide (ZnO) dispersed in the base fluid water at the concentration of 0.25 %wt. A series of experimental tests were conducted between 9:00 A.M. to 16:00 P.M. ZnO nanofluids passed through the PVT panel at various mass flow rates. To increase the thermal efficiency and performance of the PVT, instead of using plain water, nanofluids were introduced. The parameters such as output power, surface temperature, fluid outlet temperature, thermal efficiency, and electrical efficiency were examined at the different mass flow rates such as 0.008 kg/s, 0.010 kg/s, and 0.012 kg/s. Added to above, the proposed photovoltaic thermal system was also assisted in producing hydrogen by electrolysis process. Polymer electrolyte membrane (PEM) has been used to generate the hydrogen via electrolysis. With the use of nanofluids, the electrical efficiency and thermal efficiency were increased owing to the reduction in the cell temperature. Introduction of the nanofluids at the optimal mass flow rate helps the panel to produce higher electrical output. The hydrogen yield rate was also increased by the use of nanofluids. Among the different mass flow rate, 0.012 kg/s reported maximum thermal efficiency of 33.4% with the hydrogen production rate of 17.4 ml/min. Based on the extensive observed results procured, photovoltaic thermal systems can be a promising candidate for the production of hydrogen using PEM electrolyzer.  相似文献   

8.
This article provides a critical discussion of prospects of solar thermal hydrogen production in terms of technological and economic potentials and their possible role for a future hydrogen supply. The study focuses on solar driven steam methane reforming, thermochemical cycles, high temperature water electrolysis and solar methane cracking. Development status and technological challenges of the processes and objectives of ongoing research are described. Estimated hydrogen production costs are shown in comparison to other options. A summary of current discussions and today's scenarios of future use of hydrogen as an energy carrier and a brief overview on the development status of end-use technologies characterise uncertainties whether hydrogen could emerge as important energy carrier until 2050. Another focus is on industrial hydrogen demand in areas with high direct solar radiation which may be the main driver for the further development of solar thermal hydrogen production processes in the coming decades.  相似文献   

9.
In this study the photovoltaic hybrid thermal system has been fabricated for an effective increase in production of electric output. Further the PV/T system also designed to produce the hydrogen from the water through electrolysis process. Several studies reported drastic reduction in the electric output due to high cell temperatures. Nevertheless, these effects are reduced by introduction of the nanoparticles. This study also examines the nanofluids MWCNT and Fe2O3 as the passive cooling agent for higher electric output production without any major energy loss. The nanoparticles are dispersed in the water at the optimum fashions to increase the thermal and electrical efficiency of the system. Both MWCNT and Fe2O3 nanofluids were passed to the hybrid system at the flow rate of 0.0075 kg/s and 0.01 kg/s. The highest electrical output and thermal efficiency has been obtained at 12.30 P.M. With regard to the production of hydrogen, the maximum productions were observed from 12.15 P.M. to 13.00 P.M.. Implementation of this method compensates the energy loss with superior electrical output compared to previous conventional method. By compelling the results, 0.01 kg/s subjected to be efficient on the electricity production and the hydrogen generation. Further, employing the electrolyzer as the attached to the hybrid system produces the hydrogen, which can be stored for future use as the promising source of energy.  相似文献   

10.
The electrochemical production of hydrogen (H2) from liquid methanol in acidic aqueous media was investigated in a proton exchange membrane (PEM) electrolyser, comprising a two-compartment glass cell with a membrane electrode assembly (MEA) composed of a Nafion® 117 membrane and gas diffusion electrodes (GDE). Methanol electrolysis was studied at concentrations ranging from 0 to 16 M, where 0 M corresponds to water electrolysis. The influence of catalysts (Pt and Pt–Ru), catalyst support (C or black), operating temperatures (23, 50 and 75 °C) and operating modes (dry and wet cathode) were evaluated in the static mode. A theoretical thermodynamic analysis of the system was done as a function of temperature. The limiting current densities, kinetic parameters, including the Tafel slopes and current exchange density, and apparent activation energies were determined.  相似文献   

11.
Wastewater treatment is essential to shield the environment. The production of H2 is substantial for prospering its applications in diversified sectors; hence the study of wastewater treatment for H2 production is accomplished. Various technologies have been developed and studied considering the potential of wastewater to generate hydrogen-rich gas. These technologies have different mechanisms, diversified setups, and processes. Perhaps these technologies are proven to be exceptional exposures for hydrogen production. Fortunately, a valuable contribution to the environment and the H2 economy is that some technological processes have been promoted to synthesize H2 from lab scale to pilot scale. Contemplating such comprehensive exposure to H2 synthesis from wastewater, the critical information of eight emerging technologies, including their mechanism and reaction parameters influencing the process, pros, cons, and future developmental scopes, are described in this review by classifying them into three different classes, namely light-dependent technologies, light-independent technologies, and other technologies.  相似文献   

12.
The purpose of this work is to develop and evaluate a mathematical model for the process of hydrogen production in Venezuela, via electrolysis and using hydroelectricity, with a view to using it as an energy vector in rural sectors of the country. Regression models were prepared to estimate the fluctuation of the main variables involved in the process: the production of hydrogen, the efficiency of energy conversion, the cost of hydroelectricity and the cost of the electrolyser. Finally, the proposed model was applied to various different time-horizons and populations, obtaining the cost of hydrogen production in each case. The results obtained are well below those mentioned in the references, owing largely to the low cost of the electricity used, which accounts for around 45%45% of the total cost of the system.  相似文献   

13.
In this paper, production of hydrogen from concentrated solar radiation is examined by a laboratory scale solar tower system that is capable of handling continuous flow photocatalysis. The system is built and studied under a solar simulator with an aiming area of 20 × 20 cm2. The fraction of solar spectrum useful for water splitting depends on the energy band gap of the selected photocatalyst. Two types of nano-particulate photocatalysts are used in this work: ZnS (3.6 eV) and CdS (2.4 eV). The effect of light concentration on photocatalysis performance is studied using Alfa Aesar 99.99% pure grade, 325 mesh ZnS nano-particles. An improved quantum efficiency of 73% is obtained as compared to 45% with the same sample under non-concentrated light in a previous study. Only 1.1% of the energy of the solar radiation spectrum can be used by ZnS catalyst. A mixture of CdS and ZnS nano-particulate photocatalysts (both Alfa Aesar 99.99% pure grade, 325 mesh) is used to conduct a parametric study for a wider spectrum capture corresponding to 18% of the incident energy. Hydrogen production increases from 0.1 mmol/h to 0.21 mmol/h when the operating conditions are varied from 25 °C and 101 kPa to 40 °C and 21 kPa absolute pressures. Furthermore, the implementation of a continuous flow process results in an improvement in the energy efficiency by a factor of 5.5 over the batch process.  相似文献   

14.
The steam electrolysis performance of an intermediate-temperature solid oxide electrolysis cell (SOEC) was measured at 650 °C at various steam concentrations. The cell voltage decreased with increasing steam concentration, which was attributed to a decrease in the steam electrode polarization. The highest performance of the SOEC was 1.32 V at 0.57 A cm−2. On the basis of the electrolytic characteristics of this cell, the efficiency of a hydrogen production system operating at a capacity of 300 N m3 h−1 was estimated. The system efficiency reached a higher heating value (HHV standard) of 98% due to the effective recovery of thermal energy from exhaust gas.  相似文献   

15.
A solar-wind hybrid trigeneration system is proposed and analyzed thermodynamically through energy and exergy approaches in this paper. Hydrogen, electricity and heat are the useful products generated by the hybrid system. The system consists of a solar heliostat field, a wind turbine and a thermochemical copper-chlorine (Cu-Cl) cycle for hydrogen production linked with a hydrogen compression system. A solar heliostat field is employed as a source of thermal energy while the wind turbine is used to generate electricity. Electric power harvested by the wind turbine is supplied to the electrolyzer and compressors and provides an additional excess of electricity. Hydrogen produced by the thermochemical copper-chlorine (Cu-Cl) cycle is compressed in a hydrogen compression system for storage purposes. Both Aspen Plus 9.0 and EES are employed as software tools for the system modeling and simulation. The system is designed to achieve high hydrogen production rate of 455.1 kg/h. The overall energy and exergy efficiencies of the hybrid system are 49% and 48.2%, respectively. Some additional results about the system performance are obtained, presented and discussed in the paper.  相似文献   

16.
In this study, two wind-solar-based polygeneration systems namely CES-1 and CES-2 are developed, modeled, and analyzed thermodynamically. CES-1 hybridizes a heliostat based CSP system with wind turbines while CES-2 integrates heliostat-based CPVT with wind turbines. This study aims to compare the production and thermodynamics performance of two heliostat based concentrated solar power technologies when hybridized with wind turbines. The systems have been modeled to produce, freshwater, hot water, electricity, hydrogen, and cooling with different cycles/subsystems. While the overall objective of the study is to model two polygeneration systems with improved energy and exergy performances, the performances of two solar technologies are compared. The wind turbine system integrated with the comprehensive energy systems will produce 1.14 MW of electricity and it has 72.2% energy and exergy efficiency. Also, based on the same solar energy input, the performance of the heliostat integrated CPVT system (CES-2) is found to be better than that of the CSP based system (CES-1). The polygeneration thermal and exergy efficiencies for the two systems respectively are 48.08% and 31.67% for CES-1; 59.7% and 43.91% for CES-2. Also, the electric power produced by CES-2 is 280 kW higher in comparison to CES-1.  相似文献   

17.
Producing green hydrogen from wind energy is one potential method to mitigate curtailment. This study develops a general approach to examine the economic benefit of adding hydrogen production capacity through water electrolysis along with the fuel cell and storage facilities in a wind farm in north Texas. The study also investigates different day ahead market bidding strategies in the existence of these technologies. The results show that adding hydrogen capacity to the wind farm is profitable when hydrogen price is greater than $3.58/kg, and that the optimal day ahead market bidding strategy changes as hydrogen price changes. The results also suggest that both the addition of a fuel cell to reconvert stored hydrogen to electricity and the addition of a battery to smooth the electricity input to the electrolyzer are suboptimal for the system in the case of this study. The profit of a particular bidding scenario is most sensitive to the selling price of hydrogen, and then the input parameters of the electrolyzer. This study also provides policy implications by investigating the impact of different policy schemes on the optimal hydrogen production level.  相似文献   

18.
A novel idea of wind energy based methanol and hydrogen production is proposed in this study. The proposed system utilizes the industrial carbon emissions to produce a useful output of methanol. There are several pros of manufacturing the methanol as it has the capability to be employed as conventional automotive fuel as it carries the advantages of efficient performance, low emissions and low flammability risk. The designed system comprises of the major subsystems of wind turbines, proton exchange membrane fuel cell (PEMFC), methanol production system and distillation unit. The Engineering Equation Solver (EES) and Aspen Plus are utilized for system modeling and comprehensive analysis. The proposed system is also investigated to operate under different wind speeds and different wind turbine efficiencies. The proposed integration covers all the electric power required by the system. The industrial flue gas including CO2 reacts with hydrogen to produce methanol. The designed system produces both methanol and hydrogen simultaneously. For the performance indicator, efficiencies of the overall system are calculated. The exergetic efficiency is found to be 38.2% while energetic efficiency is determined to be 39.8%. Furthermore, some parametric studies are conducted to investigate the distillation column performance, methanol and hydrogen capacities and exergy destruction rates.  相似文献   

19.
One of the main advantages of fuel cell based mobility over other sustainable mobility concepts is the flexible production of hydrogen via electrolysis. To date, it is unclear how electrolysis at hydrogen refueling stations should be operated in order to achieve the lowest possible costs despite the constraints of hydrogen demand. This study proposes and evaluates an intelligent operating strategy for electrolysis capable of exploiting times of low electricity prices while participating in the spot market and maximizing wind energy utilization when combined with a wind farm. This strategy is based on a simulation model considering imperfect forecasts (e.g. of wind availability or energy prices) and non-linear electrolyzer behavior. Results show that this approach reduces hydrogen production costs by up to 9.2% and increases wind energy utilization by up to 19%, respectively.  相似文献   

20.
In this study, we conceptually develop and thermodynamically analyze a new continuous-type hybrid system for hydrogen production which photoelectrochemically splits water and performs chloralkali electrolysis. The system has a potential to produce hydrogen efficiently, at low cost, and in an environmentally benign way by maximizing the utilized solar spectrum and converting the byproducts into useful industrial commodities. Furthermore, by using electrodes as electron donors to drive photochemical hydrogen production, the hybrid system minimizes potential pollutant emissions. The products of the hybrid system are hydrogen, chlorine and sodium hydroxide, all of which are desired industrial commodities. The system production yield and efficiencies are investigated based on an operation temperature range of 20 °C–80 °C. A maximum energy efficiency of 42% is achieved between the temperatures of 40 °C and 50 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号