首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to assess the influence of substrate concentration on the fermentative hydrogen production from sweet sorghum extract, in a continuous stirred tank bioreactor. The reactor was operated at a Hydraulic Retention Time (HRT) of 12 h and carbohydrate concentrations ranging from 9.89 to 20.99 g/L, in glucose equivalents. The maximum hydrogen production rate and yield were obtained at the concentration of 17.50 g carbohydrates/L and were 2.93 ± 0.09 L H2/L reactor/d and 0.74 ± 0.02 mol H2/mol glucose consumed, corresponding to 8.81 ± 0.02 L H2/kg sweet sorghum, respectively. The main metabolic product at all steady states was butyric acid, while ethanol production was high at high substrate concentrations. The experiments showed that hydrogen productivity depends significantly on the initial carbohydrate concentration, which also influences the distribution of the metabolic products.  相似文献   

2.
The Anaerobic digestion model 1 (ADM1) framework can be used to predict fermentative hydrogen production, since the latter is directly related to the acidogenic stage of the anaerobic digestion process. In this study, the ADM1 model framework was used to simulate and predict the process of fermentative hydrogen production from the extractable sugars of sweet sorghum biomass. Kinetic parameters for sugars’ consumption and yield coefficients of acetic, propionic and butyric acid production were estimated using the experimental data obtained from the steady states of a CSTR. Batch experiments were used for kinetic parameter validation. Since the ADM1 does not account for metabolic products such as lactic acid and ethanol that are crucial during the fermentative hydrogen production process, the structure of the model was modified to include lactate and ethanol among the metabolites and to improve the predictions. The modified ADM1 simulated satisfactorily batch experiments although further modifications could be made in order to further improve the predictions for the hydrogenogenic process.  相似文献   

3.
The aim of the present study was to evaluate the effectiveness of a developed, ADM1-based kinetic model for the hydrogen production process in batch and continuous cultures of the bacterium Ruminococcus albus grown on sweet sorghum extract as the sole carbon source. Although sorghum extract is known to contain at least two different sugars, i.e. sucrose and glucose, no biphasic growth was observed in batch cultures as such growth is reported to occur in cultures of R. albus with mixed substrates. Thus, taking into account that the main sugar of sweet sorghum extract is sucrose, batch experiments with different initial concentrations of sucrose were performed in order to estimate the growth kinetics of the bacterium on this substrate. The kinetic parameters used, concerning the endogenous metabolism of the bacterium as well as those concerning the effect of pH and hydrogen partial pressure (PH2), were the same as those estimated in a previous study with glucose as carbon source. Subsequently, the experimental data of batch and continuous experiments with sweet sorghum extract were simulated based on the already developed, modified ADM1 model accounting for the use of sugar-based substrate. It was shown that the model which was developed on synthetic substrates was successful in adequately describing the behavior of the microorganism on a real substrate such as sweet sorghum extract and predicting the experimental results quite well with a deviation of the model predictions from the experimental results being between 5-18% for the hydrogen yield.  相似文献   

4.
This study employed statistically based experimental designs to optimize fermentation conditions for hydrogen production from sweet sorghum syrup by anaerobic mixed cultures. Initial screening of important factors influencing hydrogen production, i.e., total sugar, initial pH, nutrient solution, iron (II) sulphate (FeSO4), peptone and sodium bicarbonate was conducted by the Plackett–Burman method. Results indicated that only FeSO4 had statistically significant (P ≤ 0.005) influences on specific hydrogen production (Ps) while total sugar and initial pH had an interdependent effect on Ps. Optimal conditions for the maximal Ps were 25 g/L total sugar, 4.75 initial pH and 1.45 g/L FeSO4 in which Ps of 6897 mL H2/L was estimated. Estimated optimum conditions revealed only 0.04% difference from the actual Ps of 6864 mL H2/L which suggested that the optimal conditions obtained can be practically applied to produce hydrogen from sweet sorghum syrup with the least error.  相似文献   

5.
This study proposes that the on-line pH control via a model-based adaptive controller markedly improves the dark fermentative hydrogen production. According to the dynamic behavior of the dark fermentation process, pH, which rapidly declines with the beginning of the biogas production, should be precisely controlled around its optimal value in a narrow range. The success of on-line pH control was guaranteed by performing the preliminary simulation studies by experimental data obtained from dynamic analysis to determine ARMAX model order with Recursive Least Squares parameter estimation method and then to control the pH with Generalized Minimum Variance (GMV) controller. On-line control of pH at the optimal value of 6.0 during the 25 h dark fermentation process resulted in 5.4 times higher biogas production, 6.2 times higher biogas production potential, nearly doubled the duration of fermentation, and 18.4% biogas production rate increment in comparison with the uncontrolled pH case.  相似文献   

6.
This study investigated the potential of hydrogen and volatile fatty acid coproduction from two steps dark fermentation with dilute acid treatments of the residual slurry after 1st step fermentation. Sweet sorghum stalks (SS) was used as substrate along with Clostridium thermosaccharolyticum as production microbe. Residual lignocelluloses after 1st step fermentation were treated for 1 h by sulfuric acid concentration of 0.25, 0.5, 1.0, 1.5, 2.0 and 2.5% (w/v) with different reaction temperature of 120, 90 and 60 °C were studied. The optimum severity conditions for the highest yield of products found from the treatment acid concentration of 1.5% (w/v) at 120 °C for 10 g/L of substrate concentration. Experimental data showed that two-step fermentation increased 76% hydrogen, 84% acetic acid and 113% of butyric acid production from single step. Maximum yields of hydrogen, acetic acid and butyric acid were 5.77 mmol/g-substrate, 2.17 g/L and 2.07 g/L respectively. This two-step fermentation for hydrogen and VFA production using the whole slurry would be a promising approach to SS biorefinery.  相似文献   

7.
Bacterial consortium capable of producing hydrogen in low pH (LpH) range of 3.3–4.3 is reported in this study. This operational pH is two full units below that of previously reported hydrogen producing organisms. Low pH inocula were derived from a batch biohydrogen reactor inoculated with heat treated compost (∼120 °C, 2 h), which was allowed to accumulate biogas to reach three atmospheres of equivalent headspace pressure and system pH of 3.0. Acclimation effect had positive influence on H2 production and LpH inocula were passed sequentially into more than 15 generations to achieve consistent conversion efficiency and hydrogen composition, further tested in 23 other culture cycles. With hydrogen composition in the headspace ranging from 50% to 60%, conversion efficiency of ∼43% achieved in LpH systems is comparable to that of other buffered systems. Feasibility of hydrogen production in LpH systems is demonstrated in unbuffered reactors under intermittent pressure release conditions and in absence of initial pH adjustment and stirring. Conversion efficiencies, however, decreased by ∼1-fold for each 3 °C drop below the optimum temperature of 22 °C.  相似文献   

8.
Pretreatment of sweet sorghum bagasse, an energy crop residue, with NaOH for the production of fermentable substrates, was investigated. Optimal conditions for the alkaline pretreatment of sweet sorghum bagasse were realized at 10% NaOH (w/w dry matter). A delignification of 46% was then observed, and improved significantly the efficiency of enzymatic hydrolysis. Under hydrolysis conditions without pH control, up to 50% and 41% of the cellulose and hemicellulose contained in NaOH-pretreated sweet sorghum bagasse were converted by 24 h enzymatic hydrolysis to soluble monomeric sugars. The extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus showed normal growth on hydrolysates of NaOH-pretreated biomass up to a sugar concentration of 20 g/L. Besides hydrogen, the main metabolic products detected in the fermentations were acetic and lactic acid. The maximal hydrogen yield observed in batch experiments under controlled conditions was 2.6 mol/mol C6 sugar. The maximal volumetric hydrogen production rate ranged from 10.2 to 10.6 mmol/(L h). At higher substrate concentrations the production of lactic acid increased at the expense of hydrogen production.  相似文献   

9.
The effect of butyrate on hydrogen production and the potential mechanism were investigated by adding butyric acid into dark fermentative hydrogen production system at different concentrations at pH range of 5.5–7.0. The results showed that under all the tested pH from 5.5 to 7.0, the addition of butyric acid can inhibit the hydrogen production, and the inhibitory degree (from 10.5% to 100%) increased with the increase of butyric acid concentration and with the decrease of pH values, which suggested that the inhibition effect is highly associated with the concentration of undissociated acids. Substrate utilization rate and VFAs accumulation also decreased with the addition of butyric acid. The microbial community analysis revealed that butyrate addition can decrease the dominant position of hydrogen-producing microorganisms, such as Clostridium, and increase the proportion of other non-hydrogen-producing bacteria, including Pseudomonas, Klebsiella, Acinetobacter, and Bacillus.  相似文献   

10.
The relationship between total soluble sugar content and Brix in stalk juice of sweet sorghum was determined through one-dimensional linear regression. Meanwhile, bioethanol fermentation experiments were conducted in shaking flasks and 10 l fluidized bed bioreactor with stalk juice of Yuantian No. 1 sweet sorghum cultivar when immobilized yeast was applied. The experimental results in the shaking flasks showed that the order of influence on improving ethanol yield was (NH4)2SO4>MgSO4>K2HPO4, and the optimum inorganic salts supplement dose was determined as follows: K2HPO4 0%, (NH4)2SO4 0.2%, MgSO4 0.05%. When the optimum inorganic salts supplement dose was used in fermentation in 10 l fluidized bed reactor, the fermentation time and ethanol content were 5 h and 6.2% (v/v), respectively, and ethanol yield was 91.61%, which was increased by 9.73% than blank. In addition, the results showed that the fermentation time was about 6–8 times shorter in fluidized bed bioreactor with immobilized yeast than that of conventional fermentation technology. As a result, it can be concluded that the determined optimum inorganic salts supplement dose could be used as a guide for commercial ethanol production. The fluidized bed bioreactor with immobilized yeast technology has a great potential for ethanol fermentation of stalk juice of sweet sorghum.  相似文献   

11.
Three experimental sweet sorghum varieties (M81, Topper and Theis) and three post-harvest conditions were evaluated for ethanol production: juices extracted by milling were obtained from the whole plant, plant without panicle, and stalk (plant without panicle and leaves), respectively. A linear relationship was found between the total fermentable sugar concentrations and Brix degrees of the juices, which can predict the potential ethanol yield by field analytical tests. The juice extractability presented different behavior among the sweet sorghum varieties with respect to the treatments studied. However such treatments did not affect the level of sugar concentration of the juices obtained and the fermentation efficiency. Topper and Theis showed the best performance in terms of ethanol concentration, fermentation efficiency and ethanol yield. The variety used and its post-harvest treatment should be appropriately selected in order to improve the ethanol production from sweet sorghum.  相似文献   

12.
This study was focused on investigating the potential of hydrogen and volatile fatty acid (VFA) coproduction. Sweet sorghum stalks (SS) were used as substrate along with Clostridium thermocellum and Clostridium thermosaccharolyticum as production microbes. Inoculation ratio of C. thermosaccharolyticum to C. thermocellum (0:1–1.5:1 and 1:0 v/v), substrate concentrations (2.5–15.0 g/L) and inoculation time intervals of C. thermosaccharolyticum followed by C. thermocellum (0–48 h) were investigated. Experimental data showed that higher yields of hydrogen and VFA were obtained in the co-culture than their individual cultures. The optimum conditions for the highest yield of products found as 1:1 inoculation ratio of both strains, 24 h of time gap between C. thermosaccharolyticum followed by C. thermocellum after the first inoculation and 5 g/L of substrate concentration. The maximum yield of products was observed as hydrogen (5.1 mmol/g-substrate), acetic acid (1.27 g/L) and butyric acid (1.05 g/L) at optimum conditions. The results suggest that SS can be used for simultaneous production of hydrogen and VFA employing co-culture of C. thermocellum and C. thermosaccharolyticum strains. This approach can contribute to the sustainability of biorefinery.  相似文献   

13.
Continuous biological hydrogen production from sweet sorghum syrup by mixed cultures was investigated by using anaerobic sequencing batch reactor (ASBR). The ASBR was conducted based on the optimum condition obtained from batch experiment i.e. 25 g/L of total sugar concentration, 1.45 g/L of FeSO4 and pH of 5.0. Feasibility of continuous hydrogen fermentation in ASBR operation at room temperature (30 ± 3 °C) with different hydraulic retention time (HRT) of 96, 48, 24 and 12 hr and cycle periods consisting of filling (20 min), settling (20 min), and decanting (20 min) phases was analyzed. Results showed that hydrogen content decreased with a reduction in HRT i.e. from 42.93% (96 hr HRT) to 21.06% (12 hr HRT). Decrease in HRT resulted in a decrease of solvents produced which was from 10.77 to 2.67 mg/L for acetone and 78.25 mg/L to zero for butanol at HRT of 96 hr-12 hr, respectively. HRT of 24 hr was the optimum condition for ASBR operation indicated by the maximum hydrogen yield of 0.68 mol H2/mol hexose. The microbial determination in DGGE analysis indicated that the well-known hydrogen producers Clostridia species were dominant in the reacting step. The presence of Sporolactobacillus sp. which could excrete the bacteriocins causing the adverse effect on hydrogen-producing bacteria might responsible for the low hydrogen content obtained.  相似文献   

14.
This study explored the fermentative hydrogen production by immobilized microorganisms from glycerol, which is the byproduct of biodiesel production, and compared it with suspended fermentation. The effect of immobilization on hydrogen production process was examined. Results showed that both cumulative hydrogen production (CHP) and hydrogen yield (HY) were enhanced by microbial immobilization. The highest CHP and HY of 64 mL/100 mL and 0.52 mol H2/mol glycerol were obtained by immobilized microorganisms, compared to 9 mL/100 mL and 0.29 mol H2/mol glycerol in suspended microorganisms. Immobilization enhanced CHP and HY by 611.1% and 79.3%. In addition, immobilized microorganisms showed stronger tolerance to high substrate concentration and higher capability in glycerol utilization, which is of great significance for hydrogen production from glycerol. The enhanced hydrogen production may be due to the favorable micro-environment for different microorganisms in immobilized beads.  相似文献   

15.
Wheat straw is an abundant agricultural residue which can be used as raw material to produce hydrogen (H2), a promising alternative energy carrier, at a low cost. Bioconversion of lignocellulosic biomass to produce H2 usually involves three main operations: pretreatment, hydrolysis and fermentation. In this study, the efficiency of exogenous enzyme addition on fermentative H2 production from wheat straw was evaluated using mixed-cultures in two experimental systems: a one-stage system (direct enzyme addition) and a two-stage system (enzymatic hydrolysis prior to dark fermentation). H2 production from untreated wheat straw ranged from 5.18 to 10.52 mL-H2 g-VS−1. Whatever the experimental enzyme addition procedure, a two-fold increase in H2 production yields ranging from 11.06 to 19.63 mL-H2 g-VS−1 was observed after enzymatic treatment of the wheat straw. The high variability in H2 yields in the two step process was explained by the consumption of free sugars by indigenous wheat straw microorganisms during enzymatic hydrolysis. The direct addition of exogenous enzymes in the one-stage dark fermentation stage proved to be the best way of significantly improving H2 production from lignocellulosic biomass. Finally, the optimal dose of enzyme mixture added to the wheat straw was evaluated between 1 and 5 mg-protein g-raw wheat straw−1.  相似文献   

16.
pH值调控对发酵产氢的影响   总被引:6,自引:0,他引:6  
利用厌氧活性污泥作产氢接种物,发酵有机质产生氢气,一般是在酸性条件下进行的。以厌氧活性污泥作接种物,有机酸为基质,在厌氧、恒温25℃、不同的pH值下,启动发酵产氢,以及监测产氢过程中的pH值变化,得出pH值过高时,有大量的甲烷生成,pH值过低时,则对产氢细菌不利,难于产氢。启动发酵产氢时,pH值不宜底于4.3,较为适宜的产氢pH值范围4.5~5.5。  相似文献   

17.
This work aimed to investigate the effects of supplementing two distinct types of ash, namely fly ash (FA) and bottom ash (BA) on the dark fermentation (DF) process of food waste (FW) for H2 production. Both types of biomass combustion ash (BCA) were collected in an industrial bubbling fluidized bed combustor, using residual forest biomass as fuel. Results indicated that adding BCA at different doses of 1, 2 and 4 g/L could effectively enhance H2 generation when compared to the control test without BCA addition. This stimulatory effect was attributed to the crucial role of metal elements released from BCA such as sodium, potassium, calcium, magnesium, and iron in the provision of buffering capacity and inorganic nutrients for the functioning of hydrogen-forming bacteria. The highest H2 yield of 169 mL per g of volatile solids (VS) were obtained by adding only a small amount of BA (1 g/L) to the reactive system, representing a significant increment of 1070% compared to the control reactor. Furthermore, a significant decrease in the bacterial lag phase time from 26 h to 2.7 h, as well as about a 12-fold increase in the energy recovery as H2 gas was observed at BA dosage of 1 g/L in comparison with the control reactor. Overall, this study suggested that a proper addition of BCA could promote the DF process of FW and enhance biohydrogen production.  相似文献   

18.
Sago starch processing effluent (SSPE) is an ideal bio-resource that can be utilised as a substrate for fermentative reactions due to its relatively high organic content. Annually in Malaysia, about 2.5 million tonnes of effluent are generated from the processing of sago starch. In this study, the potential use of SSPE as a substrate for fermentative hydrogen production was confirmed under all the experimental conditions studied. The maximum hydrogen production and volumetric hydrogen production rate were 575 mL H2/L SSPE and 57.54 mL H2/hr.L SSPE, respectively, from cultures with an initial pH of 7 and substrate concentration of 11 g soluble carbohydrate/L SSPE. The final soluble metabolites were comprised mainly of acetate (24–43%), butyrate (4–20%), propionate (1–7%) and ethanol (44–66%), suggesting an acetic acid-ethanol type fermentation pathway.  相似文献   

19.
A newly isolated strain Enterococcus faecium INET2 was used as inoculum for biohydrogen production through dark fermentation. The individual and interactive effect of initial pH, operation temperature, glucose concentration and inoculation amount on the accumulation of hydrogen during fermentation was examined by a Box–Behnken Design (BBD), and hydrogen production process was analyzed at the optimal condition. A significant interactive effect between glucose concentration and pH was observed, the optimal condition was initial pH 7.1, operation temperature 34.8 °C, glucose concentration 11.3 g/L and inoculation amount 10.4%. Hydrogen yield, maximum hydrogen production rate and hydrogen production potential were determined to be 1.29 mol H2/mol glucose, 86.7 L H2/L/h and 1.35 L H2/L. Metabolites analysis showed that E. faecium INET2 followed the pyruvate: formate lyase (Pfl) pathway in first 16 h, followed by the acetate-type fermentation and then shifted to butyrate-type fermentation. Maximum hydrogen production rate was accompanied with a quick formation of acetic acid.  相似文献   

20.
Cryptococcus curvatus has great potential in fermenting unconditioned hydrolysates of sweet sorghum bagasse. With hydrolysates obtained by enzymatic hydrolysis of the solid pretreated by microwave with lime, the maximal yeast cell dry weight and lipid content were 10.83 g/l and 73.26%, respectively. For hydrolysates obtained in the same way but without lime, these two parameters were 15.50 g/l and 63.98%, respectively. During yeast fermentation, glucose and xylose were consumed simultaneously while cellobiose was released from the residual bagasse. The presence of lime, on one hand, made cellulose more accessible to enzymes as evidenced by higher total reducing sugar release compared to that without during enzymatic hydrolysis step; on the other hand, it caused the degradation of sugars to non-sugar chemicals during pretreatment step. As a result, higher lipid yield of 0.11 g/g bagasse or 0.65 ton/hectare of land was achieved from the pathway of microwave pretreatment and enzymatic hydrolysis while 0.09 g/g bagasse or 0.51 ton/hectare of land was attained from the process of lime-assisted microwave pretreatment followed by the same enzymatic saccharification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号