首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper discusses the feasibility of the use solar energy into hydrogen production using a photovoltaic energy system in the four main cities of Iraq. An off-grid photovoltaic system with a capacity of 22.0 kWp, an 8.0 kW alkaline electrolyser, a hydrogen compressor, and a hydrogen tank were simulated for one year in order to generate hydrogen. A mathematical model of the proposed system behavior is presented using MATLAB/Simulink, considering nine years from the 2021 to 2030 project span using hourly experimental weather data. The outcomes demonstrated that the annual hydrogen production ranged from 1713.92 kg up to 1891.12 kg, oxygen production ranged from 1199.74 to 1323.78 kg, and water consumption ranged from 7139.91 L to 7877.29 L. The hydrogen evaluated costs equal to $3.79/kg. The results show that the optimum site for solar hydrogen production systems can be established in the midwest of Iraq and in other cities with similar climates, especially those that get a lot of sunlight.  相似文献   

2.
3.
The distinguish generation methods regarding hydrogen generation using solar energy as a triggering agent are discussed in this paper, specifically indirect techniques. Two broadly classified processes are direct and indirect. The Direct processes exhibit high thermal efficiency, but their low conversion efficiency, maximum heat dissipation, and the lack of readily available heat resistive materials in abundance put the indirect processes relatively on the higher rank. The indirect methods include bio photolysis, thermochemical, photolysis, and electrolysis. There are promising features of indirect ways. Bio-photolysis provides zero pollution; the photolysis method reduces the carbon footprint in the environment; Thermochemical is meritorious in low electricity consumption due to high heat generation in the process; Electrolysis proves its worth in negligible pollution and considerable efficiency. The energy and exergy efficiency for hydrogen yielding are compared, and it is found that electrolysis has the highest energy and exergy efficiency. In terms of raw material availability, thermochemical ranks very low as compared to photolysis (abundant solar energy), bio-photolysis (a readily available bio-agent), and electrolysis (electrolytic agents to carry out the process).  相似文献   

4.
Pure phase of CeFeO3 perovskite was synthesized by using a modified microwave-assisted method and was systematically studied by photo-electrochemical (PEC) investigations for water splitting reaction. Characterization studies confirm the formation of crystalline orthorhombic single phase perovskite structure with space group Pbnm and having agglomerated sponge-like morphology with nano size grains. DRS shows broad absorption in UV–Visible region, while tauc plot also inferred estimated band gap of 1.9 eV. The photo-activity of their screen printed thin film was analyzed by PEC studies, which includes photocurrent, EIS spectra, MS-plot, J-V plots. On illumination, EIS analysis of CeFeO3 reveals improved charge transfer at interfaces of semiconductor/electrolyte. The photocurrent density difference of CeFeO3 was increased to 6.9 mA cm?2 at an applied bias of 1.5 V vs (Ag/AgCl). PEC H2 evolution shows significant cumulative hydrogen rate of 12.3 μmol cm?2 h?1. All these results reveal that the microwave-synthesized CeFeO3 is a potential candidate for PEC application under the visible light illumination.  相似文献   

5.
Electricity generation via direct conversion of solar energy with zero carbon dioxide emission is essential from the aspect of energy supply security as well as from the aspect of environmental protection. Therefore, this paper presents a system for hydrogen production via water electrolysis using a 960 Wp solar power plant. The results obtained from the monitoring of photovoltaic modules mounted in pairs on a fixed, a single-axis and a dual-axis solar tracker were examined to determine if there is a possibility to couple them with an electrolyzer. Energy performance of each photovoltaic system was recorded and analyzed during a period of one year, and the data were monitored on an online software service. Estimated parameters, such as monthly solar irradiance, solar electricity production, optimal angle, monthly ambient temperature, and capacity factor were compared to the observed data. In order to get energy efficiency as high as possible, a novel alkaline electrolyzer of bipolar design was constructed. Its design and operating UI characteristic are described. The operating UI characteristics of photovoltaic modules were tuned to the electrolyzer operating UI characteristic to maximize production. The calculated hydrogen rate of production was 1.138 g per hour. During the study the system produced 1.234 MWh of energy, with calculated of 1.31 MWh , which could power 122 houses, and has offset 906 kg of carbon or an equivalent of 23 trees.  相似文献   

6.
Evaluation of a solar thermal system using building louvre shading devices   总被引:1,自引:0,他引:1  
External louvres are increasingly used to provide solar protection for building glazed surfaces. The integration of collectors into the external louvres of buildings offers a means of reducing system cost as well as providing architects with more freedom to integrate the technology into their designs. This work concerns the modification of existing louvre designs to integrate a solar collector in the shading device. The evaluation of a thermal solar system for water heating is assessed in this paper. A numerical model for the integrated solar collector was developed for different configurations and the collector efficiency is quantified for each configuration. System thermal performance was obtained for the climatic conditions of Lisbon (Portugal) and Tenerife (Spain). Economic and environmental viability of the system is assessed.  相似文献   

7.
H. M. N. AlMadani   《Renewable Energy》2003,28(12):1915-1924
Solar energy is a clean source of energy that is available in all regions of the world. Bahrain, where the present research was conducted, is rich in solar energy expressed as hours of sunshine which ranges between 13 h per day in the summer months to 10 h per day in the winter months.Water desalination by solar energy can be effectively achieved by using an electrodialysis process operated with photovoltaic cells. This method is attractive because electrodialysis requires a D.C. power supply as the driving force for removing the salt ions. This experimental work involved a small-scale commercial-type electrodialysis stack powered by photovoltaic cells. The stack consisted of 24 cell pairs, arranged in four hydraulic stages and two electrical stages. The feed water was fed from two sources, the first being sodium chloride solutions prepared in the laboratory and the second was groundwater of medium salinity. The experiments were done at temperatures ranging from 10 to 40 °C and product flow rates ranging from 50 to 300 gallons/day. Increasing the flow rate resulted in lower product quality given in terms of percent salt removal. Increasing the temperature generally resulted in better product quality.  相似文献   

8.
The conditions under which an oxygen photocatalyst can improve multiple band gap (semiconductor) solar energy water splitting are probed. Recently, we provided evidence that previous models significantly underestimated the magnitude of H2 fuel which may be generated by solar energy, and demonstrated a bipolar band gap solar system electrolyzing water at VH2O

H2O→H2+1/2O2; VH2O>E°H2O=E°O2E°H2;E°H2O(25°C)=1.229 V
at an unprecedented 18.3% solar energy conversion efficiency. Three conditions are shown in which oxygen photocatalyst addition can further improve this process; (i) a reduction in VH2O; (ii) at VH2O, capability to sustain electrolysis currentsgenerated photocurrents, and (iii) catalyst activation at hνphoto-O2>hνphoto-bipolar. We show that RuS2 with 1% Fe is capable of meeting these conditions.  相似文献   

9.
In this Technical Note, an analytical expression for the efficiency of a solar still has been derived as a function of solar still and climatical parameters. The analysis is based on the basic energy balance of the solar still. It is observed that an expression for the efficiency of a solar still is of the same form as obtained for a flat-plate collector.  相似文献   

10.
This paper presents a comprehensive technical and economic assessment of potential green hydrogen and ammonia production plants in different locations in Iran with strong wind and solar resources. The study was organized in five steps. First, regarding the wind density and solar PV potential data, three locations in Iran were chosen with the highest wind power, solar radiation, and a combination of both wind/solar energy. All these locations are inland spots, but since the produced ammonia is planned to be exported, it must be transported to the export harbor in the South of Iran. For comparison, a base case was also considered next to the export harbor with normal solar and wind potential, but no distance from the export harbor. In the second step, a similar large-scale hydrogen production facility with proton exchange membrane electrolyzers was modeled for all these locations using the HOMER Pro simulation platform. In the next step, the produced hydrogen and the nitrogen obtained from an air separation unit are supplied to a Haber-Bosch process to synthesize ammonia as a hydrogen carrier. Since water electrolysis requires a considerable amount of water with specific quality and because Iran suffers from water scarcity, this paper, unlike many similar research studies, addresses the challenges associated with the water supply system in the hydrogen production process. In this regard, in the fourth step of this study, it is assumed that seawater from the nearest sea is treated in a desalination plant and sent to the site locations. Finally, since this study intends to evaluate the possibility of green hydrogen export from Iran, a detailed piping model for the transportation of water, hydrogen, and ammonia from/to the production site and the export harbor is created in the last step, which considers the real routs using satellite images, and takes into account all pump/compression stations required to transport these media. This study provides a realistic cost of green hydrogen/ammonia production in Iran, which is ready to be exported, considering all related processes involved in the hydrogen supply chain.  相似文献   

11.
Using solid oxide membrane, this paper presents the theoretical modeling of the high temperature electrolysis of hydrogen bromide gas for hydrogen production. The electrolysis of hydrogen halides such as hydrogen bromide is an attractive process, which can be coupled to hybrid thermochemical cycles. The high temperature electrolyzer model developed in the present study includes concentration, ohmic, and activation losses. Exergy efficiency, as well as energy efficiency parameters, are used to express the thermodynamic performance of the electrolyzer. Moreover, a detailed parametric study is performed to observe the effects of various parameters such as current density and operating temperature on the overall system behavior. The results show that in order to produce 1 mol of hydrogen, 1.1 V of the applied potential is required, which is approximately 0.8 V less compared to high temperature steam electrolysis under same conditions (current density of 1000 A/m2 and temperature of 1073 K). Furthermore, it is found that with the use of the presented electrolyzer, one can achieve energy and exergy efficiencies of about 56.7% and 53.8%, respectively. The results presented in this study suggest that, by employing the proposed electrolyzer, two-step thermochemical cycle for hydrogen production may become more attractive especially for nuclear- and concentrated solar-to-hydrogen conversion applications.  相似文献   

12.
The promising advances in research in two-step solar hydrogen production from water have increased interest in producing hydrogen with this technology. In this framework, the Hydrosol II Project pilot plant for producing continuous solar hydrogen from water using a ferrite-based redox technology was erected at the CIEMAT-Plataforma Solar de Almería. Two reactors allow the oxidation and reduction steps to be performed in parallel, which, sequentially switched, make hydrogen production quasi-continuous.  相似文献   

13.
14.
15.
This paper presents a simulative analysis of the energy efficiency of solar aided biomass gasification for pure hydrogen production. Solar heat has been considered as available at 250 °C in three gasification processes: i) gasification reactor followed by two water gas shift reactors and a pressure swing adsorber; ii) gasification reactor followed by an integrated membrane water gas shift reactor; iii) supercritical gasification reactor followed by two flash separators and a pressure swing adsorber.  相似文献   

16.
提出了利用光伏电能通过质子交换膜水电解池(PEMWE)电解水制氢气的光伏氢能生产系统,实现光伏电能的长期能源存储,其主要元件包括光伏组件、PEMWE、氢气罐和氢气压缩机等。建立了各元件数学模型和系统效率模型,使用MATLAB搭建了基于PEMWE的光伏氢能生产系统的仿真模型,并对其运行性能进行了分析。仿真结果表明,PEMWE可以在变功率模式下将光伏电能转换为氢能,系统效率达70%左右。  相似文献   

17.
This paper presents a conceptual design of a solar powered hydrogen fueling station for a single family home in Wallingford, Connecticut, USA. Sixty high-efficiency monocrystalline silicon photovoltaic (PV) solar panels (Total capacity: 18.9 kW) account for approximately 94.7% of the hydrogen home’s power consumption. The fueling station consists of a 165 bar high pressure electrolyzer for on-site production of 2.24 kg/day of hydrogen, three-bank cascade configuration storage tanks (4.26 kg of H2 at 350 bar) and a SAE J2600 compliant hydrogen nozzle. The system produces 0.8 kg/day of hydrogen for a fuel cell vehicle with an average commute of 56 km/day (Fuel mileage: 71 km/kg H2). Safety codes and standards applicable at the facility are described, and a well-to-wheel analysis is performed to contrast the carbon dioxide emissions of conventional gasoline and fuel cell vehicles. The energy efficiency obtained by incorporating a solar-hydrogen system for residential applications is also computed.  相似文献   

18.
Hydrogen production from the electrolysis of water by sea or lake waters used as electrolyte plays a crucial role in providing sustainable hydrogen production. Production of hydrogen from these natural sources is highly utilized from small scale to complex applications due to water resources' inconsumable potential. In this study, the hydrogen production potential of Turkey's different regions such as the Black Sea, Aegean Sea, Marmara Sea, Mediterranean Sea, Lake Van, Ağcaşar Dam, Yeşilırmak, and Kızılırmak rivers are investigated. Solar energy potential values are used as the current sources for simulating their renewable energy hydrogen production values. According to the results, higher hydrogen production rates are obtained from the Marmara and Lake Van regions. It is concluded that the hydrogen production potential is highly dependent on the pH values of the water source and the salinity rate of seawater that is descending from the Mediterranean Sea to the Black Sea region. Besides, solar radiation, sunshine duration, and water temperature are the other essential factors. Moreover, Mediterranean Sea water (Içel-Anamur) has about 23% higher hydrogen production than Lake Van and has the most increased hydrogen production by 80 L m-2 in May and June.  相似文献   

19.
With the help of the typical model of a water electrolysis hydrogen production system, which mainly includes the electrolysis cell, separator, and heat exchangers, three expressions of the system efficiency in literature are compared and evaluated, from which one reasonable expression of the efficiency is chosen and directly used to analyze the performance of a water electrolysis hydrogen production system under different operation conditions. Several new configurations of a water electrolysis system are put forward and the problem how to calculate the efficiencies of these configurations is solved. Moreover, a solid oxide steam electrolyzer system (SOSES) for hydrogen production is taken as an example to expound that the different configurations of a water electrolysis system should be adopted for different operation conditions. The results obtained here may provide some guidance for the optimum design and operation of water electrolysis systems for hydrogen production.  相似文献   

20.
A hydrogen production method is proposed, which utilizes solar energy powered thermodynamic cycle using supercritical carbon dioxide (CO2) as working fluid for the combined production of hydrogen and thermal energy. The proposed system consists of evacuated solar collectors, power generating turbine, water electrolysis, heat recovery system, and feed pump. In the present study, an experimental prototype has been designed and constructed. The performance of the cycle is tested experimentally under different weather conditions. CO2 is efficiently converted into supercritical state in the collector, the CO2 temperature reaches about 190 °C in summer days, and even in winter days it can reach about 80 °C. Such a high-temperature realizes the combined production of electricity and thermal energy. Different from the electrochemical hydrogen production via solar battery-based water splitting on hand, which requires the use of solar batteries with high energy requirements, the generated electricity in the supercritical cycle can be directly used to produce hydrogen gas from water. The amount of hydrogen gas produced by using the electricity generated in the supercritical cycle is about 1035 g per day using an evacuated solar collector of 100.0 m2 for per family house in summer conditions, and it is about 568.0 g even in winter days. Additionally, the estimated heat recovery efficiency is about 0.62. Such a high efficiency is sufficient to illustrate the cycle performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号