首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Au–Co alloys supported on Vulcan XC-72R carbon were prepared by the reverse microemulsion method and used as the anode electrocatalyst for direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties were investigated by energy dispersive X-ray (EDX), X-ray diffraction (XRD), cyclic voltammetry, chronamperometry and chronopotentiometry. The results show that supported Au–Co alloys catalysts have higher catalytic activity for the direct oxidation of BH4 than pure nanosized Au catalyst, especially the Au45Co55/C catalyst presents the highest catalytic activity among all as-prepared Au–Co alloys, and the DBHFC using the Au45Co55/C as anode electrocatalyst shows as high as 66.5 mW cm−2 power density at a discharge current density of 85 mA cm−2 at 25 °C.  相似文献   

2.
This paper reports a CO-tolerant electrocatalyst, mesoporous tungsten carbide-supported platinum (Pt/m-WC), for methanol oxidation. The support m-WC was synthesized by evaporation-induced triconstituent co-assembly method in which phenol formaldehyde polymer resin was used as the carbon precursor, tungsten hexachloride as the tungsten precursor and an amphiphilic triblock copolymers (P123) as the template. Nano-sized platinum particles were loaded on the m-WC to prepare Pt/m-WC. The structure and morphology of the prepared electrocatalyst were characterized by transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) and X-ray diffraction (XRD), and its activity toward methanol oxidation and its tolerance for CO were determined by cyclic voltammetry (CV) and chronopotentiometry (CP). It is found that the m-WC carburized at 900 °C(m-WC-900) has a larger specific surface area (182 m2 g−1) and a appropriate crystal structure compared to the m-WC carburized at 800 °C or 1000 °C, and thus is better as the support of platinum. The prepared Pt/m-WC-900 exhibits higher activity toward methanol oxidation and better tolerance for CO than Pt/Vulcan XC-72. The onset potential of CO electro-oxidation on Pt/m-WC is 0.449 V, which is more negative than that on Pt/Vulcan XC-72 (0.628 V).  相似文献   

3.
A Pt-Nb2O5/C electrocatalyst was synthesized by a two-step process as an anode material in direct methanol fuel cell (DMFC). The Pt-Nb2O5/C catalysts heat-treated at different temperatures (400 and 500 °C) in flowing N2 were characterized by various methods such as inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, transmission electron microscopy, and X-ray photoemission spectroscopy (XPS). The heat-treated Pt-Nb2O5/C catalyst at 400 °C showed the best electrochemical activity for CO and methanol oxidations among the prepared catalysts. The XPS results showed the electronic structure change of Pt, indicating a formation of interaction between Pt and Nb2O5. It is suggested that a synergistic effect between Pt and Nb2O5 enhances the electrocatalytic activity for CO and methanol oxidations. We believe that Nb2O5-promoted Pt/C catalyst may be regarded as one of the attractive candidates as an anode material in DMFC.  相似文献   

4.
Nano-sized Pt–Pd/C and Pt–Co/C electrocatalysts have been synthesized and characterized by an alcohol-reduction process using ethylene glycol as the solvent and Vulcan XC-72R as the supporting material. While the Pt–Pd/C electrodes were compared with Pt/C (20 wt.% E-TEK) in terms of electrocatalytic activity towards oxidation of H2, CO and H2–CO mixtures, the Pt–Co/C electrodes were evaluated towards oxygen reduction reaction (ORR) and compared with Pt/C (20 wt.% E-TEK) and Pt–Co/C (20 wt.% E-TEK) and Pt/C (46 wt.% TKK) in a single cell. In addition, the Pt–Pd/C and Pt–Co/C electrocatalyst samples were characterized by XRD, XPS, TEM and electroanalytical methods. The TEM images of the carbon supported platinum alloy electrocatalysts show homogenous catalyst distribution with a particle size of about 3–4 nm. It was found that while the Pt–Pd/C electrocatalyst has superior CO tolerance compared to commercial catalyst, Pt–Co/C synthesized by polyol method has shown better activity and stability up to 60 °C compared to commercial catalysts. Single cell tests using the alloy catalysts coated on Nafion-212 membranes with H2 and O2 gases showed that the fuel cell performance in the activation and the ohmic regions are almost similar comparing conventional electrodes to Pt–Pd anode electrodes. However, conventional electrodes give a better performance in the ohmic region comparing to Pt–Co cathode. It is worth mentioning that these catalysts are less expensive compared to the commercial catalysts if only the platinum contents were considered.  相似文献   

5.
The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H2SO4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.  相似文献   

6.
Nano-sized binary and ternary alloys are synthesized by polyol process on Vulcan XC72-R support. Nanostructured binary Pt–Pd/C catalysts are prepared either by co-deposition or by depositing on each other. Ternary Pt–Pd–Ru/C catalysts are prepared by co-deposition. The structural characteristics of the nanocatalysts are examined by TEM and XRD. Their electrocatalytic activity toward methanol oxidation and CO stripping curves were measured by electrochemical measurements and compared with that of commercial Pt/C catalyst. The results show that the binary nanocatalyst prepared by depositing the Pt precursor colloids on Pd-Vulcan XC-72R are more active toward methanol oxidation than that of the co-deposited binary alloy nanocatalyst. The co-deposited ternary Pt–Pd–Ru/C nanocatalyst based membrane electrodes assembly shows higher power density compared to the binary nanocatalysts as well as commercial Pt/C catalyst in direct methanol fuel cell. Significantly higher catalytic activity of the nanocatalysts toward methanol oxidation compared to that of the commercial Pt/C is believed to be due to lower level of catalyst poisoning.  相似文献   

7.
The nanoporous carbon (NPC) is synthesized by carbonization of metal–organic framework-5 (MOF-5, [Zn4O(bdc)3], bdc = 1,4-benzenedicarboxylate) with furfuryl alcohol (FA) as carbon source and used as the carrier of the anode catalyst for the direct borohydride–hydrogen peroxide fuel cell (DBHFC). Then the NPC-supported Pt anode catalyst (Pt/NPC) is firstly prepared by a modified NaBH4 reduction method. The obtained Pt/NPC catalyst is characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), cyclic voltammetry, chronopotentiometry, chronoamperometry and fuel cell test. The results show that the Pt/NPC is made up of the spherical Pt nanoparticles which disperse uniformly on the surface of the NPC with average size 2.38 nm, and exhibits 36.38% higher current density for directly borohydride oxidation than the Vulcan XC-72 carbon supported Pt (Pt/XC-72). Besides, the DBHFC using the Pt/NPC as anode electrocatalyst shows the maximum power density as high as 54.34 mW cm−2 at 25 °C.  相似文献   

8.
We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 °C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H2PtCl6) in ethylene glycol. Pt nanoparticles of ∼3.0 nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of ∼2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials.  相似文献   

9.
Nano PtCuO particles were deposited on Vulcan XC-72R carbon black using the impregnation and microwave irradiation methods. The prepared catalysts were characterized by XRD, TEM and EDX analyses. TEM images indicated that the microwave method provides homogeneously distributed catalyst particles in smaller size, compared to the one prepared by the impregnation method. The electrocatalytic activity of Pt?CuO/C electrocatalysts was investigated to oxidize methanol in 0.5 M H2SO4 solution by applying cyclic voltammetry and chronoamperometry techniques. The oxidation current density of Pt?CuO/C electrocatalyst, prepared by the microwave method, showed two folds increment with a potential shift in the negative direction by 69 and 36 mV at the first and second oxidation peaks, respectively, relative to those at the catalyst prepared by the impregnation method. The effect of varying methanol concentration on the resulting oxidation current density of Pt?CuO/C electrocatalysts was studied. Some kinetic information about the reaction order with respect to methanol and Tafel slope values was calculated. Slower current density decay was observed in the chronoamperogram of Pt?CuO/C electrocatalyst, prepared by the microwave method, reflecting a lower degree of surface poisoning.  相似文献   

10.
Carbon xerogels prepared by the resorcinol-formaldehyde (RF) sol-gel method with ambient-pressure drying were explored as Pt catalyst supports for polymer electrolyte membrane (PEM) fuel cells. Carbon xerogel samples without Pt catalyst (CX) were characterized by the N2 sorption method (BET, BJH, others), and carbon xerogel samples with supported Pt catalyst (Pt/CX) were characterized by thermogravimetry (TGA), powder X-ray diffraction (XRD), electron microscopy (SEM, TEM) and ex situ cyclic voltammetry for thin-film electrode samples supported on glassy carbon and studied in a sulfuric acid electrolyte. Experiments on Pt/CX were made in comparison with commercially obtained samples of Pt catalyst supported on a Vulcan XC-72R carbon black support (Pt/XC-72R). CX samples had high BET surface area with a relatively narrow pore size distribution with a peak pore size near 14 nm. Pt contents for both Pt/CX and Pt/XC-72R were near 20 wt % as determined by TGA. Pt catalyst particles on Pt/CX had a mean diameter near 3.3 nm, slightly larger than for Pt/XC-72R which was near 2.8 nm. Electrochemically active surface areas (ESA) for Pt as determined by ex situ CV measurements of H adsorption/desorption were similar for Pt/XC-72R and Pt/CX but those from CO stripping were slightly higher for Pt/XC-72R than for Pt/CX. Membrane-electrode assemblies (MEAs) were fabricated from both Pt/CX and Pt/XC-72R on Nafion 117 membranes using the decal transfer method, and MEA characteristics and single-cell performance were evaluated via in situ cyclic voltammetry, polarization curve, and current-interrupt and high-frequency impedance methods. In situ CV yielded ESA values for Pt/XC-72R MEAs that were similar to those obtained by ex situ CV in sulfuric acid, but those for Pt/CX MEAs were smaller (by 13-17%), suggesting that access of Nafion electrolyte to Pt particles in Pt/CX electrodes is diminished relative to that for Pt/XC-72R electrodes. Polarization curve analysis at low current density (0.9 V cell voltage) reveals slightly higher intrinsic catalyst activity for the Pt/CX catalyst which may reflect the fact that Pt particle size in these catalysts is slightly higher. Cell performance at higher current densities is slightly lower for Pt/CX than the Pt/XC-72R sample, however after normalization for Pt loading, performance is slightly higher for Pt/CX, particularly in H2/O2 and at lower cell temperatures (50 °C). This latter finding may reflect a possible lower mass-transfer resistance in the Pt/CX sample.  相似文献   

11.
Platinum (Pt) and platinum–ruthenium (PtRu) nanoparticles supported on Vulcan XC-72 carbon and single-wall carbon nanotubes (SWCNT) are prepared by a microwave-assisted polyol process. The catalysts are characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The PtRu nanoparticles, which are uniformly dispersed on carbon, have diameters of 2–6 nm. All the PtRu/C catalysts display the characteristic diffraction peaks of a face centred cubic Pt structure, excepting that the 2θ values are shifted to slightly higher values. The results from XPS analysis reveal that the catalysts contain mostly Pt(0) and Ru(0), with traces of Pt(II), Pt(IV) and Ru(IV). The electrooxidation of methanol is studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. Both PtRu/C catalysts have high and more durable electrocatalytic activities for methanol oxidation than a comparative Pt/C catalyst. Preliminary data from a single direct methanol fuel cell using the SWCNT supported PtRu alloy as the anode catalyst delivers high power density.  相似文献   

12.
A novel electrocatalyst, nanoporous palladium (npPd) rods can be facilely fabricated by dealloying a binary Al80Pd20 alloy in a 5 wt.% HCl aqueous solution under free corrosion conditions. The microstructure of these nanoporous palladium rods has been characterized using scanning electron microscopy and transmission electron microscopy. The results show that each Pd rod is several microns in length and several hundred nanometers in diameter. Moreover, all the rods exhibit a typical three-dimensional bicontinuous interpenetrating ligament-channel structure with length scale of 15-20 nm. The electrochemical experiments demonstrate that these peculiar nanoporous palladium rods (mixed with Vulcan XC-72 carbon powders to form a npPd/C catalyst) reveal a superior electrocatalytic performance toward methanol oxidation in the alkaline media. In addition, the electrocatalytic activity obviously depends on the metal loading on the electrode and will reach to the highest level (223.52 mA mg−1) when applying 0.4 mg cm−2 metal loading on the electrode. Moreover, a competing adsorption mechanism should exist when performing methanol oxidation on the surface of npPd rods, and the electro-oxidation reaction is a diffusion-controlled electrochemical process. Due to the advantages of simplicity and high efficiency in the mass production, the npPd rods can act as a promising candidate for the anode catalyst for direct methanol fuel cells (DMFCs).  相似文献   

13.
A novel catalyst support was synthesized by in situ chemical oxidative polymerization of pyrrole on Vulcan XC-72 carbon in naphthalene sulfonic acid (NSA) solution containing ammonium persulfate as oxidant at room temperature. Pt nanoparticles with 3–4 nm size were deposited on the prepared polypyrrole–carbon composites by chemical reduction method. Scanning electron microscopy and transmission electron microscopy measurements showed that Pt particles were homogeneously dispersed in polypyrrole–carbon composites. The Pt nanoparticles-dispersed catalyst composites were used as anodes of fuel cells for hydrogen and methanol oxidation. Cyclic voltammetry measurements of hydrogen and methanol oxidation showed that Pt nanoparticles deposited on polypyrrole–carbon with NSA as dopant exhibit better catalytic activity than those on plain carbon. This result might be due to the higher electrochemically available surface areas, electronic conductivity and easier charge-transfer at polymer/carbon particle interfaces allowing a high dispersion and utilization of deposited Pt nanoparticles.  相似文献   

14.
The electrochemical activities of three bimetallic Pt–M (M = Fe, Co, and Ni) catalysts in methanol oxidation have been investigated. An efficient approach including chemical oxidation of carbon nanotubes (CNTs), two-step refluxing, and subsequent hydrogen reduction was used to thoroughly disperse bimetallic nanopartilces on the oxidized CNTs. Three catalysts with a similar Pt:M atomic ratio, Pt–Fe (75:25), Pt–Co (75:25), and Pt–Ni (72:28), were prepared for the investigation of methanol oxidation. The Pt–M nanoparticles with an average size of 5–10 nm are uniform and cover the surface of CNTs. Cyclic voltammetry showed that the three pairs of catalysts were electrochemically active in the methanol oxidation. On the basis of the experimental results, the Pt–Co/CNT catalyst has better electrochemical activity, antipoisoning ability, and long-term cycleability than the other electrocatalysts, which can be justified by the bifunctional mechanism of bimetallic catalysts. The satisfactory results shed some light on how the use of Pt–Co/CNT composite could be a promising electrocatalyst for high-performance direct methanol fuel cell applications.  相似文献   

15.
Passive direct methanol fuel cells (DMFCs) are considered interesting candidates for small-scale power applications. We investigated the performance in passive DMFCs of the PtRu catalyst supported on poly(3,4-ethylenedioxythiophene)-polystyrene-4-sulphonate (pEDOT-pSS), a Nafion®-free, mixed electronic–protonic conductor that assures electronic transport for methanol oxidation at the anode and provides the proton movement. The DMFCs were assembled with Vulcan XC-72R carbon/Pt (in excess) cathode, Nafion® 117 membranes and 1 M CH3OH, and long-time performance data are reported and discussed.  相似文献   

16.
Conductive perovskite type lanthanum nickelate (LaNiO3) powders are prepared through a nitrilotriacetic acid (NTA) precursor complex route. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) results indicate complete decomposition of the precursor complex to LaNiO3 at 900 °C in 4 h. Powder X-ray diffraction (XRD) patterns confirm the formation of the perovskite. Scanning electron microscopic (SEM) analysis and particle size determination reveal the formation of micron-sized particles, probably by the agglomeration of nanoparticles of LaNiO3. Cyclic voltammetry (CV) is used to assess the electrochemical activity of LaNiO3 in comparison with Pt/C, as well as the addition of small amounts of Pt/C to LaNiO3 or a Vulcan XC-72R carbon support of three different compositions, towards methanol electro-oxidation. LaNiO3 does not show much activity for methanol oxidation. However, a synergistic effect is observed when LaNiO3 is mixed with small amounts of Pt/C. The increased oxidation current due to the addition of LaNiO3 to small amounts of Pt/C in the three mixtures containing LaNiO3 is attributed to either the additional catalyst site of the perovskite in addition to the Pt site, or the removal of CO poisoning on the Pt surface by the surface oxygen of the adjacent perovskite.  相似文献   

17.
In this paper, we reported a novel electrocatalyst, Vulcan XC-72-supported porous platinum nano-particles (Ptp/C) for methanol oxidation. In the preparation of Ptp/C, platinum precursor was first adsorbed on carbon and then reduced by l-ascorbic acid in ethylene glycol solution. The structure and morphology of Ptp/C and its activity toward methanol oxidation were characterized by transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) measurement, X-ray diffraction (XRD), energy-dispersion spectrometer (EDS), cyclic voltammetry (CV), and chronoamperometry (CA), with a comparison of the electrocatalyst prepared with sodium borohydride as reducer (Pts/C). It is found that both electrocatalysts have similar particle size but have different surface morphology of platinum and thus exhibit different electrocatalytic activity toward methanol oxidation. The platinum particle size of both electrocatalysts is 3–5 nm, but the corresponding BET surface areas are different significantly, 131.6 m2 g−1 and 87.7 m2 g−1 for Ptp/C and Pts/C, respectively, indicative of the porous structure of platinum particles in Ptp/C. The peak current for methanol oxidation on CV is 167 mA mg−1 and 44 mA mg−1 for Ptp/C and Pts/C, respectively, indicative of the high electrocataytic activity of Ptp/C toward methanol oxidation. The result from CA shows that Ptp/C has good stability as the electrocatalyst for methanol oxidation.  相似文献   

18.
Ni and Pd–Ni nanoparticles were chemically deposited on Vulcan XC-72R carbon black by impregnation method using NaBH4 as a reducing agent. The prepared electrocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). The electrocatalytic activity of Ni/C and Pd–Ni/C electrocatalysts towards methanol oxidation in 0.5 M KOH solution was examined using cyclic voltammetry and chronoamperometry. Two methanol oxidation peaks were observed on the Pd–Ni/C at 0 and +860 mV. Their current density values are higher than those at Pd/C and Ni/C electrocatalysts by 1.92 and 1.68 times, respectively. The catalytic rate constant of methanol oxidation reaction at Ni/C and Pd–Ni/C electrocatalysts in (0.2 M MeOH + 0.5 M KOH) solution was estimated using double-step chronoamperometry as 5.64 × 103 and 6.25 × 103 cm3 mol−1 s−1, respectively. Pd–Ni/C is more stable than Pd/C and Ni/C electrocatalysts. Therefore, Pd–Ni/C is a suitable as a less expensive electrocatalyst for methanol oxidation in alkaline medium.  相似文献   

19.
20.
Vulcan XC-72R, Ketjen Black EC 300J and Black Pearls 2000 carbon blacks were used as the additive in Pt black cathode catalyst layer to investigate the effect on direct methanol fuel cell (DMFC) performance. The carbon blacks, Pt black catalyst and catalyst inks were characterized by N2 adsorption and scanning transmission electron microscopy (STEM) with Energy dispersive X-ray (EDX) spectroscopy. The cathode catalyst layers without and with carbon black additive were characterized by scanning electron microscopy, EDX, cyclic voltammetry and current-voltage curve measurements. Compared with Vulcan XC-72R and Black Pearls 2000, Ketjen Black EC 300J was more beneficial to increase the electrochemical surface area and DMFC performance of the cathode catalyst layer. The cathode catalyst layer with Ketjen Black EC 300J additive was kept intimately binding with the Nafion membrane after 360 h stability test of air-breathing DMFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号