首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computation of Proton Exchange Membrane (PEM) fuel cell's cathode Catalyst Layer (CL) is performed using agglomerate models in this paper, and the results are compared with homogenous one. Following our earlier homogenous model for cathode CL (see Khajeh-Hosseini et al., 2010), the focus of the present study is on agglomerate model. In this study, the derivation of agglomerate model is performed in such a way that in the simplified case when agglomerate sizes shrink to zero, the homogeneous model condition is retrieved. Validations versus two sets of experimental data are performed. For example, in one of the validation cases, Case (II), it is observed that in Itot = 3000 [A m−2] the homogeneous model overestimates the performance by 80%. But the agglomerate model agrees well with the validating test cases. A set of parametric studies are performed using the agglomerate model, in which the influences of some CL structural- and cell operating-parameters are studied. A sensitivity study on the cell performance is performed to rank the influence of the parameters, with rank 1 for the most influential parameter. It is observed the agglomerate sizes possess rank 1. These results give useful guidelines for manufactures of PEMFC catalyst layers.  相似文献   

2.
In this work, a three-dimensional, steady-state, multi-agglomerate model of cathode catalyst layer in polymer electrolyte membrane (PEM) fuel cells has been developed to assess the activation polarization and the current densities in the cathode catalyst layer. A finite element technique is used for the numerical solution to the model developed. The cathode activation overpotentials, and the membrane and solid phase current densities are calculated for different operating conditions. Three different configurations of agglomerate arrangements are considered, an in-line and two staggered arrangements. All the three arrangements are simulated for typical operating conditions inside the PEM fuel cell in order to investigate the oxygen transport process through the cathode catalyst layer, and its impact on the activation polarization. A comprehensive validation with the well-established two-dimensional “axi-symmetric model” has been performed to validate the three-dimensional numerical model results. Present results show a lowest activation overpotential when the agglomerate arrangement is in-line. For more realistic scenarios, staggered arrangements, the activation overpotentials are higher due to the slower oxygen transport and lesser passage or void region available around the individual agglomerate. The present study elucidates that the cathode overpotential reduction is possible through the changing of agglomerate arrangements. Hence, the approaches to cathode overpotential reduction through the optimization of agglomerate arrangement will be helpful for the next generation fuel cell design.  相似文献   

3.
Fuel cell systems are environmentally friendly energy converters that directly transform the chemical energy of the fuel to electricity. The proton exchange membrane (PEM) fuel cells are one of the most common type of fuel cells since they deliver high power density and are lighter and smaller when compared to the other cells. However, commercialization of the PEM fuel cells is challenging due to the high cost of its components. In addition to high catalyst costs, the problem of poor water management is also a vital issue that needs to be overcome. While the gas diffusion layer of a fuel cell is essential for removing the by-product water, the Nafion solution contained in the catalyst layer has hydrophobic properties and is crucial for both preventing the water accumulation and increasing the effectiveness of the fuel cell. In this study, the effects of Carbon:Nafion ratio on the reduction potential was investigated. The cyclic voltammograms (CV) was produced for each ratio, and it was shown that the CVs exhibit characteristics of hydrogen adsorption/desorption peaks. All the linear sweep voltammogram (LSV) curves revealed well distinguished regions of kinetic, mixed and diffusion limited reaction rate. As a result, it was observed that the ratio of 1:5 resulted higher reduction potential compared to 1:3 and 1:7. Finally, a mathematical model was purposed, in which related the rotation rate and platinum coating with the current density, in order to gain insight about the responses of the fuel cell system. The constructed model is tested and validated experimentally for various parameters that are present in the system, and it may be utilized to determine oxygen reaction activities of the catalysts without performing any unnecessary electrochemical tests.  相似文献   

4.
A numerical model for a PEM fuel cell has been developed and used to investigate the effect of some of the key parameters of the porous layers of the fuel cell (GDL and MPL) on its performance. The model is comprehensive as it is three-dimensional, multiphase and non-isothermal and it has been well-validated with the experimental data of a 5 cm2 active area-fuel cell with/without MPLs. As a result of the reduced mass transport resistance of the gaseous and liquid flow, a better performance was achieved when he GDL thickness was decreased. For the same reason, the fuel cell was shown to be significantly improved with increasing the GDL porosity by a factor of 2 and the consumption of oxygen doubled when increasing the porosity from 0.40 to 0.78. Compared to the conventional constant-porosity GDL, the graded-porosity (gradually decreasing from the flow channel to the catalyst layer) GDL was found to enhance the fuel cell performance and this is due to the better liquid water rejection. The incorporation of a realistic value for the contact resistance between the GDL and the bipolar plate slightly decreases the performance of the fuel cell. Also the results show that the addition of the MPL to the GDL is crucially important as it assists in the humidifying of the electrolyte membrane, thus improving the overall performance of the fuel cell. Finally, realistically increasing the MPL contact angle has led to a positive influence on the fuel cell performance.  相似文献   

5.
The electrochemical behavior and the reactant transport in the porous gas diffusion layer (GDL) and catalyst layer (CL) are controlled by a large number of parameters such as porosity, permeability, conductivity, catalyst loading, and average pore size, etc. A three‐dimensional polymer electrolyte membrane fuel cell model is developed. The model accounts for the mass, fluid, and thermal transport processes as well as the electrochemical reaction. Using this model, the effects of the various porous electrode design parameters including porosity, solid electronic conductivity, and thermal conductivity of cathode GDL, and the catalyst loading, average pore size of cathode CL are investigated through parametric study. The model is shown to agree well with the experimental data of some porous electrode specifications. In addition, the model shows promise as a tool for optimizing the design of fuel cells. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Lattice Boltzmann method is an effective tool for depicting all transport phenomena governed by advection-diffusion-reaction mechanisms. In the present study, five different cathode catalyst layers of PEM fuel cells with dissimilar morphologies are stochastically reconstructed. The agglomerates of carbon black particles are considered as ellipsoids which can have different level of stretching. The reactive air flow through the reconstructed catalyst layers is simulated by 3D lattice Boltzmann agglomerate modeling for the first time. Species distributions in the pore region, electrical potential distribution in the electrolyte film, and current density distribution at the interface of catalyst layer and membrane are depicted and analyzed. The results of this study show that oxygen and water vapor mole fraction variation is unsmooth and disturbed; and by increasing of ellipsoid stretching, this unsmooth and disturbed manner becomes more severe. Besides, the water content of the electrolyte film remains at its initial value mostly at the top of upper agglomerates while higher water content is observed where the agglomerates are closer to each other. Moreover, the catalyst layer in which ellipsoidal agglomerates have the highest level of stretching provides the maximum average current density.  相似文献   

7.
In this study, parametric study on the cathode catalyst layer in a Proton Exchange Membrane (PEM) fuel cell was conducted. Steady-state, two dimensional (2D) and nonisothermal conditions were proposed as critical hypotheses of work in essence. Multi-component mass diffusion along with convection mechanism in a single cell, conduction changes of proton and electron with experimental data and Knudsen diffusion which has a crucial impact on the simulation task in nanoscale, were considered in our study. Moreover, carbon nanotube (CNT), platinum (Pt) and Nafion loading effects as well as the porosity characteristics in a single-phase flow at different catalyst layer (CL) thicknesses were thoroughly investigated. The results presented herein, revealed that the amount of Pt and CNT has more profound effect than catalyst porosity. Based on the results derived, the model presented could be a promising mean to develop and construct a nanostructured catalyst layer. Meanwhile, our modified agglomerate model predicts the performance of fuel cell systems in different experimental conditions.  相似文献   

8.
针对高工作电流密度下,燃料电池内局部水淹导致的传质损失问题,本研究提出了一种阴极流道多进口分流进气方式。实验研究了三种典型分流口位置及分流进量对电池性能的影响。研究发现随着分流口远离阴极主进气口,电池性能呈现先上升后下降的趋势,且当分流口靠近主进气口时,增加分流量有助于电池性能提升,但分流量的增加对电池性能的提升存在一个极限值;因此,在对电池进行分流进气优化时需综合考虑分流口位置和分流量的影响。当分流口为SIP-30%且分流量为按化学当量比ξc = 0.75取值时,分流进气方式相比传统进气方式,电池的最大功率密度高出17.8%。  相似文献   

9.
The performance of a polymer electrolyte membrane (PEM) fuel cell is significantly affected by liquid water generated at the cathode catalyst layer (CCL) potentially causing water flooding of cathode; while the ionic conductivity of PEM is directly proportional to its water content. Therefore, it is essential to maintain a delicate water balance, which requires a good understanding of the liquid water transport in the PEM fuel cells. In this study, a one-dimensional analytical solution of liquid water transport across the CCL is derived from the fundamental transport equations to investigate the water transport in the CCL of a PEM fuel cell. The effect of CCL wettability on liquid water transport and the effect of excessive liquid water, which is also known as “flooding”, on reactant transport and cell performance have also been investigated. It has been observed that the wetting characteristic of a CCL plays significant role on the liquid water transport and cell performance. Further, the liquid water saturation in a hydrophilic CCL can be significantly reduced by increasing the surface wettability or lowering the contact angle. Based on a dimensionless time constant analysis, it has been shown that the liquid water production from the phase change process is negligible compared to the production from the electrochemical process.  相似文献   

10.
A one-dimensional, steady-state and isothermal model for a proton exchange membrane (PEM) fuel cell has been developed to investigate the effects of various parameters such as the molar fraction of nitrogen gas, relative humidity, temperature, pressure, membrane thickness, anode and cathode stoichiometric flow ratio and the distribution of oxygen in the cathode catalyst while water transfer in membrane is produced by diffusion, pressure gradient and electro-osmotic drag. The most critical problems to overcome in the proton exchange membrane (PEM) fuel cell technology are the water and thermal management. The results show that the cell performance increases as operating pressure and temperature are increased. The performance of cell can decrease by decreasing the relative humidity of inlet gases and increasing the membrane thickness. Increasing the anode and cathode stoichiometric flow ratio can also improve the cell performance. As the oxygen concentration becomes zero in about 8 percent depth of cathode catalyst layer, the thickness of cathode catalyst layer can be reduced 92 percent without any potential loss in output voltage. The cathode activation loss also becomes high by increasing the molar fraction of nitrogen gas. The modeling results agree very well with experimental results.  相似文献   

11.
Flooding of catalyst layers is one of the major issues, which effects performance of low temperature proton exchange membrane fuel cells (PEMFC). Rendering catalyst layers hydrophobic one may improve the performance of PEMFC depending on Pt percentage in the catalyst and Polytetrafluoroethylene (PTFE) loading on the electrode. In this study, effect of hydrophobicity in catalyst layers on performance has been investigated by comparing performances of membrane electrode assemblies prepared with 48% Pt/C. Ultrasonic coating technique was used to manufacture highly efficient electrodes. Power density at 0.45 V increased by the addition of PTFE, from 0.95 to 1.01 W/cm2 with H2/O2 feed; while it slightly increased from 0.52 W/cm2 to 0.53 W/cm2 with H2/Air feed. Addition of PTFE to catalyst layers while keeping Pt loading constant, enhanced performance providing improved water management. Kinetic activity increased by decreasing Nafion loading from 0.37 mg/cm2 to 0.25 mg/cm2 while introducing PTFE (0.12 mg/cm2) to the electrode. Electrochemical impedance spectroscopy (EIS) results proved that charge transfer resistance decreased with hydrophobic catalyst layers for H2/O2 feed. This is attributed to enhanced water management due to PTFE presence.  相似文献   

12.
Two-phase transport in the cathode gas diffusion layer (GDL) of a proton exchange membrane fuel cell (PEMFC) is studied with a porosity gradient in the GDL. The porosity gradient is formed by adding micro-porous layers (MPL) with different carbon loadings on the catalyst layer side and on the flow field side. The multiphase mixture model is employed and a direct numerical procedure is used to analyze the profiles of liquid water saturation and oxygen concentration across the GDL as well as the resulting activation and concentration losses. The results show that a gradient in porosity will benefit the removal rate of liquid water and also enhance the transport of oxygen through the cathode GDL. The present study provides a theoretical support for the suggestion that a GDL with porosity gradient will improve the cell performance.  相似文献   

13.
14.
In this study, a mathematical model is developed for the cathode of PEM fuel cells, including multi-phase and multi-species transport and electrochemical reaction under the isothermal and steady-state conditions. The conservation equations for mass, momentum, species and charge are solved using the commercial software COMSOL Multiphysics. The catalyst layer is modeled as a finite domain and assumed to be composed of a uniform distribution of supported catalyst, liquid water, electrolyte and void space. The Stefan–Maxwell equation is used to model the multi-species diffusion in the gas diffusion and catalyst layers. Owing to the low relative species' velocity, Darcy's law is used to describe the transport of gas and liquid phases in the gas diffusion and catalyst layers. A serpentine flow field is considered to distribute the oxidant over the active cathode electrode surface, with pressure loss in the flow direction along the channel. The dependency of the capillary pressure on the saturation is modeled using the Leverette function and the Brooks and Corey relation. A parametric study is carried out to investigate the effects of pressure drop in the flow channel, permeability, inlet relative humidity and shoulder/channel width ratio on the performance of the cell and the transport of liquid water. An inlet relative humidity of 90 and 80% leads to the highest performance in the cathode. Owing to liquid water evaporation, the relative humidity in the catalyst layer reaches 100% with an inlet relative humidity of 90 and 80%, resulting in a high electrolyte conductivity. The electrolyte conductivity plays a significant role in determining the overall performance up to a point. Further, the catalyst layer is found to be important in controlling the water concentration in the cell. The cross-flow phenomenon is shown to enhance the removal of liquid water from the cell. Moreover, a shoulder/channel width ratio of 1:2 is found to be an optimal ratio. A decrease in the shoulder/channel ratio results in an increase in performance and an increase in cross flow. Finally, the Leverette function leads to lower liquid water saturations in the backing and catalyst layers than the Brooks and Corey relation. The overall trend, however, is similar for both functions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, the effect of graphene nanoplatelet (GNP) and graphene oxide (GO) based carbon supports on polybenzimidazole (PBI) based high temperature proton exchange membrane fuel cells (HT-PEMFCs) performances were investigated. Pt/GNP and Pt/GO catalysts were synthesized by microwave assisted chemical reduction support. X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Brauner, Emmet and Teller (BET) analysis and high resolution transmission electron microscopy (HRTEM) were used to investigate the microstructure and morphology of the as-prepared catalysts. The electrochemical surface area (ESA) was studied by cyclic voltammetry (CV). The results showed deposition of smaller Pt nanoparticles with uniform distribution and higher ECSA for Pt/GNP compared to Pt/GO. The Pt/GNP and Pt/GO catalysts were tested in 25 cm2 active area single HT-PEMFC with H2/air at 160 °C without humidification. Performance evaluation in HT-PEMFC shows current densities of 0.28, 0.17 and 0.22 A/cm2 for the Pt/GNP, Pt/C and Pt/GO catalysts based MEAs at 160 °C, respectively. The maximum power density was obtained for MEA prepared by Pt/GNP catalyst with H2/Air dry reactant gases as 0.34, 0.40 and 0.46 W/cm2 at 160 °C, 175 °C and 190 °C, respectively. Graphene based catalyst supports exhibits an enhanced HT-PEMFC performance in both low and high current density regions. The results indicate the graphene catalyst support could be utilized as the catalyst support for HT-PEMFC application.  相似文献   

16.
A two-dimensional (2D), single- and two-phase, hybrid multi-component transport model is developed for the cathode of PEM fuel cell using interdigitated gas distributor. The continuity equation and Darcy's law are used to describe the flow of the reactant gas and production water. The production water is treated as vapor when the current density is small, and as two-phase while the current density is greater than the critical current density. The advection–diffusion equations are utilized to study species transport of multi-component mixture gas. The Butler–Volmer equation is prescribed for the domain in the catalyst layer. The predicted results of the hybrid model agree well with the available experimental data. The model is used to investigate the effects of operating conditions and the cathode structure parameters on the performance of the PEM fuel cell. It is observed that liquid water appears originally in the cathodic catalyst layer over outlet channel under intermediate current and tends to be distributed uniformly by the capillary force with the increase of the current. It is found that reduction of the width of outlet channel can enhance the performance of PEM fuel cell via the increase of the current density over this region, which has, seemingly, not been discussed in previous literatures.  相似文献   

17.
We present a pore-scale simulation of the capillary condensation of water in the cathode catalyst layer (CCL) of proton exchange membrane fuel cells by the lattice Boltzmann method. Based on the reconstructed CCL, the capillary condensation process in CCL is simulated under different humidity conditions, and the effects of porosity and especially wettability on the liquid water distribution in CCL are studied. The influence of liquid water on the void pore size distribution and pore connectivity in CCL is evaluated, and the results show that the hydrophilic CCL is more prone to be flooded. Subsequently, the effective transport coefficients of oxygen and proton in partially saturated CCL are investigated. The results reveal that the hydrophobic CCL is beneficial for reducing the gas transport tortuosity but simultaneously causes a higher Knudsen diffusion resistance. By comprehensively considering the changes in tortuosity and Knudsen resistance caused by liquid water, a more practical correlation of effective diffusivity for the partially saturated CCL is proposed. Moreover, this work proves the vital role of liquid water in the proton conduction in CCL. The simulated effective proton conductivity in CCL is more agree with the measurements if the contribution of liquid water to proton transport is considered.  相似文献   

18.
The detaching behavior of catalyst layers in membrane electrode assembly (MEA) for PEM fuel cells could affect the lifetime of both catalyst layers and membranes. However, this issue is always neglected. Therefore, the study of detaching behavior of catalyst layer is very conducive to investigate the failure mechanism of fuel cells. The detaching of catalyst layers was simulated by dipping membrane electrode assemblies (MEAs) into H2O2 solution with or without Fe2+. We observed the presence of detaching of catalyst layers and found the varied detaching behaviors with different accelerated testing solutions: a layered-type detaching behavior is shown for the catalyst layer treated with 30% H2O2 solution, whereas a crack-like detaching behavior in the case of 30% H2O2 solution with Fe2+ species (or Fenton's test). At the same time, the layered-type detaching of catalyst layers has a higher detaching rate than the crack-like detaching. These detaching behaviors should have an inherent link to degradation of recast-ionomer (Nafion) films in catalyst layers. In addition, the effect of detaching behaviors of catalyst layers on the lifetime of fuel cells has been studied by hydrogen crossover measurement, and shows that, for the crack-like detaching, the membrane has a shorter lifetime than that for the layered detaching.  相似文献   

19.
水对质子交换膜(PEM)燃料电池的性能有极其重要的影响,良好的水管理是PEM燃料电池保持高性能的必要条件.通过试验,观察了在重力作用下液态水对PEM燃料电池性能及其内部传质的影响,分析了PEM燃料电池单体电极的不同摆放位置对其性能的影响.试验结果发现:在电流密度较小时,重力对PEM燃料电池性能的影响不明显,电流密度较大时,重力对PEM燃料电池性能的影响比较明显.试验结果对优化PEM燃料电池的结构和水管理有一定的参考价值.  相似文献   

20.
A pore scale model of a polymer electrolyte membrane (PEM) fuel cell cathode catalyst layer is developed which accounts for species transport, electrochemical reactions and thermal transport. Effective transport parameters are computed over a range of operating conditions including the effective oxygen diffusivity, effective water vapor diffusivity, effective proton conductivity, effective electron conductivity and the effective thermal conductivity. In addition, the total amount of oxygen consumption is computed for different operating conditions. Finally, a critical assessment of the impact of assumptions made in the absence of detailed morphological data is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号