首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For a given set of operating conditions, the hydrogen production from biomass gasification can be improved through optimization of the operating parameters and efficiencies. The present approach can predict hydrogen production via biomass gasification in a range of 10–32 kg/s from biomass (sawdust wood). The biomass is introduced to a gasifier at an operating temperature range of 1000–1500 K. Also, 4.5 kg/s of steam at 500 K is used as gasification medium. Results indicate that improvement in hydrogen production from biomass steam gasification depending on the amount of steam and quantity of biomass feeding to the gasifier as well the operating temperature. Over the range of feeding biomass, the hydrogen yield reaches 80–130 g H2/kg biomass while in the operating temperature examined, the hydrogen yield reaches 80 g H2/kg biomass. On mole basis it is found that, in the first range of H2 varies from 51 to 63% in the studied range of feeding biomass in existing 4.5 kg/s from steam while H2 gets to 51–53% in existing of 6.3 kg/s from steam.  相似文献   

2.
In this study, we investigate biomass-based hydrogen production through exergy and exergoeconomic analyses and evaluate all components and associated streams using an exergy, cost, energy and mass (EXCEM) method. Then, we define the hydrogen unit cost and examine how key system parameters affect the unit hydrogen cost. Also, we present a case study of the gasification process with a circulating fluidized bed gasifier (CFBG) for hydrogen production using the actual data taken from the literature. We first calculate energy and exergy values of all streams associated with the system, exergy efficiencies of all equipment, and determine the costs of equipment along with their thermodynamic loss rates and ratio of thermodynamic loss rate to capital cost. Furthermore, we evaluate the main system components, consisting of gasifier and PSA, from the exergoeconomic point of view. Moreover, we investigate the effects of various parameters on unit hydrogen cost, such as unit biomass and unit power costs and hydrogen content of the syngas before PSA equipment and PSA hydrogen recovery. The results show that the CFBG system, which has energy and exergy efficiencies of 55.11% and 35.74%, respectively, generates unit hydrogen costs between 5.37 $/kg and 1.59 $/kg, according to the internal and external parameters considered.  相似文献   

3.
Biomass gasification is a promising option for the sustainable production of hydrogen rich gas. Five different commercial or pilot scale gasification systems are considered for the design of a hydrogen production plant that generates almost pure hydrogen. For each of the gasification technique models of two different hydrogen production plants are developed in Cycle-Tempo: one plant with low temperature gas cleaning (LTGC) and the other with high temperature gas cleaning (HTGC). The thermal input of all plants is 10 MW of biomass with the same dry composition. An exergy analysis of all processes has been made. The processes are compared on their thermodynamic performance (hydrogen yield and exergy efficiency). Since the heat recovery is not incorporated in the models, two efficiencies are calculated. The first one is calculated for the case that all residual heat can be applied, the case with ideal heat recovery, and the other is calculated for the case without heat recovery. It is expected that in real systems only a part of the residual heat can be used. Therefore, the actual value will be in between these calculated values. It was found that three processes have almost the same performance: The Battelle gasification process with LTGC, the FICFB gasification process with LTGC, and the Blaue Turm gasification process with HTGC. All systems include further processing of the cleaned gas from biomass gasification into almost pure hydrogen. The calculated exergy efficiencies are, respectively, 50.69%, 45.95%, and 50.52% for the systems without heat recovery. The exergy efficiencies of the systems with heat recovery are, respectively, 62.79%, 64.41%, and 66.31%. The calculated hydrogen yields of the three processes do not differ very much. The hydrogen yield of the Battelle LTGC process appeared to be 0.097 kg (kg(dry biomass))−1, for the FICFB LTGC process a yield of 0.096 kg (kg(dry biomass))−1 was found, and for the Blaue Turm HTGC 0.106 kg (kg(dry biomass))−1.  相似文献   

4.
The purpose of this paper is to conduct a parametric study to show the best steam to carbon ratio that produces the maximum system performance of an integrated gasifier for hydrogen production. The study focuses on the energy and exergetic efficiency of the system and hydrogen production. The work is completed using computer simulation models in Engineering Equation Solver software package. This software is used for its extensive thermodynamic properties library. An equilibrium based model is used to determine the performance of the system. The data is presented in graphs which show the chemical composition in molar fractions of the syngas, the overall energy and exergy efficiency of the system, and the hydrogen production rates. A study of these parameters is conducted by varying the steam to carbon ratio entering the gasifier and the ambient temperature. It is observed that the higher the steam to carbon ratio that is achieved the more hydrogen and more power the plant is able to produce. Because of this, the exergy and energy efficiency of the system increases as the steam to carbon ratio increases as well. It is also observed that the system favors a lower ambient temperature for maximum exergy efficiency and hydrogen production.  相似文献   

5.
In this study, a Life Cycle Assessment (LCA) of biomass-based hydrogen production is performed for a period from biomass production to the use of the produced hydrogen in Proton Exchange Membrane (PEM) fuel cell vehicles. The system considered is divided into three subsections as pre-treatment of biomass, hydrogen production plant and usage of hydrogen produced. Two different gasification systems, a Downdraft Gasifier (DG) and a Circulating Fluidized Bed Gasifier (CFBG), are considered and analyzed for hydrogen production using actual data taken from the literature. Fossil energy consumption rate and Green House Gas Emissions (GHG) are defined and indicated first. Next, the LCA results of DG and CFBG systems are compared for 1 MJ/s hydrogen production to compare with each other as well as with other hydrogen production systems. While the fossil energy consumption rate and emissions are calculated as 0.088 MJ/s and 6.27 CO2 eqv. g/s in the DG system, they are 0.175 MJ/s and 17.13 CO2 eqv. g/s in the CFBG system, respectively. The Coefficient of Hydrogen Production Performance (CHPP) (newly defined as a ratio of energy content of hydrogen produced from the system to the total energy content of fossil fuels used) of the CFBG and DG systems are then determined to be 5.71 and 11.36, respectively. Thus, the effects of some parameters, such as energy efficiency, ratio of cost of hydrogen, on natural gas and capital investments efficiency are investigated. Finally, the costs of GHG emissions reduction are calculated to be 0.0172 and 0.24 $/g for the DG and CFBG systems, respectively.  相似文献   

6.
In this paper, a conceptual hybrid biomass gasification system is developed to produce hydrogen and is exergoeconomically analyzed. The system is based on steam biomass gasification with the lumped solid oxide fuel cell (SOFC) and solid oxide electrolyser cell (SOEC) subsystem as the core components. The gasifier gasifies sawdust in a steam medium and operates at a temperature range of 1023-1423 K and near atmospheric pressure. The analysis is conducted for a specific steam biomass ratio of 0.8 kmol-steam/kmol-biomass. The gasification process is assumed to be self-thermally standing. The pressurized SOFC and SOEC are of planar types and operate at 1000 K and 1.2 bar. The system can produce multi-outputs, such as hydrogen (with a production capacity range of 21.8-25.2 kgh−1), power and heat. The internal hydrogen consumption in the lumped SOFC-SOEC subsystem increases from 8.1 to 8.6 kg/h. The SOFC performs an efficiency of 50.3% and utilizes the hydrogen produced from the steam that decomposes in the SOEC. The exergoeconomic analysis is performed to investigate and describe the exergetic and economic interactions between the system components through calculations of the unit exergy cost of the process streams. It obtains a set of cost balance equations belonging to an exergy flow with material streams to and from the components which constitute the system. Solving the developed cost balance equations provides the cost values of the exergy streams. For the gasification temperature range and the electricity cost of 0.1046 $/kWh considered, the unit exergy cost of hydrogen ranges from 0.258 to 0.211 $/kWh.  相似文献   

7.
Results are reported of thermodynamic analyses of a biomass gasification unit in which sawdust is the biomass feed and the gasifying medium is either air or steam. Energy and exergy analyses are performed for the system and each of its components. A parametric study reveals the effect of design and operating parameters on the system's performance and energy and exergy efficiencies. The results show that the adiabatic temperature of biomass gasification significantly changes with the type of the gasifying medium. In addition, the exergy and energy efficiencies are observed to be higher when air is the gasifying medium rather than steam, while the system performance and exergy efficiencies are dependent on the moisture content of the feed biomass. The results are significant because they quantify the strong dependence of biomass gasification, which can be used for syngas or hydrogen production, on moisture content, and gasifying medium.  相似文献   

8.
In this study, we investigate a solar-assisted biomass gasification system for hydrogen production and assess its performance thermodynamically using actual literature data. We also analyze the entire system both energetically and exergetically and evaluate its performance through both energy and exergy efficiencies. Three feedstocks, namely beech charcoal, sewage sludge and fluff, are considered as samples in the same reactor. While energy efficiencies vary from 14.14% to 27.29%, exergy efficiencies change from 10.43% to 23.92%. We use a sustainability index (SI), as a function of exergy efficiency, to calculate the impacts on sustainable development and environment. This index changes from 1.12 to 1.31 due to intensive utilization of solar energy. Also, environmental impact of these systems is evaluated through calculating the specific greenhouse gas (GHG) emissions. They are determined to be 17.97, 17.51 and 26.74 g CO2/MJ H2 for beech charcoal, sewage sludge and fluff, respectively.  相似文献   

9.
Hydrogen has a great potential as fuel of the future and biomass can be a useful resource for the production of hydrogen. In the present work, a thermodynamic model has been developed to evaluate the yield of hydrogen from biomass through gasification in an oxygen-rich environment followed by carbon monoxide shift reaction with the injection of water. The effects of operating conditions, like gasifier equivalence ratio, quantity of water injected in the shift reactor and oxygen percentage in the gasifying agent, on the hydrogen concentration in the product gas from biomass have been evaluated. It is predicted that the process can generate 102 g hydrogen per kg of biomass, resulting in a cold gas efficiency of 65.4%. However, the air separation unit consumes a considerable amount of work in compression and refrigeration and these would decrease the overall efficiency by about 3.6 percentage points in a 5-stage compressor system.  相似文献   

10.
Biomass-based hydrogen production: A review and analysis   总被引:1,自引:0,他引:1  
In this study, various processes for conversion of biomass into hydrogen gas are comprehensively reviewed in terms of two main groups, namely (i) thermo-chemical processes (pyrolysis, conventional gasification, supercritical water gasification (SCWG)), and (ii) biological conversions (fermentative hydrogen production, photosynthesis, biological water gas shift reactions (BWGS)). Biomass-based hydrogen production systems are discussed in terms of their energetic and exergetic aspects. Literature studies and potential methods are then summarized for comparison purposes. In addition, a biomass gasification process via oxygen and steam in a downdraft gasifier is exergetically studied for performance assessment as a case study. The operating conditions and strategies are really important for better performance of the system for hydrogen production. A distinct range of temperatures and pressures is used, such as that the temperatures may vary from 480 to 1400 °C, while the pressures are in the range of 0.1–50 MPa in various thermo-chemical processes reviewed. For the operating conditions considered the data for steam biomass ratio (SBR) and equivalence ratio (ER) range from 0.6 to 10 and 0.1 to 0.4, respectively. In the study considered, steam is used as the gasifying agent with a product gas heating value of about 10–15 MJ/Nm3, compared to an air gasification of biomass process with 3–6 MJ/Nm3. The exergy efficiency value for the case study system is calculated to be 56.8%, while irreversibility and improvement potential rates are found to be 670.43 and 288.28 kW, respectively. Also, exergetic fuel and product rates of the downdraft gasifier are calculated as 1572.08 and 901.64 kW, while fuel depletion and productivity lack ratios are 43% and 74.3%, respectively.  相似文献   

11.
In the present work, the generation of hydrogen rich synthetic gas from fluidized bed steam gasification of rice husk has been studied. An equilibrium model based on equilibrium constant and material balance has been developed to predict the gas compositions. The equilibrium gas compositions are compared with the experimental data of the present group as well as of available literature. The energy and exergy analysis of the process have been carried out by varying steam to biomass ratio (ψ) within the range between 0.1-1.5 and gasification temperature from 600 °C to 900 °C. It is observed that both the energy and exergy efficiencies are maximum at the CBP (carbon boundary point) though the hydrogen production increases beyond the CBP. The HHV (higher heating value) and the external energy input both continuously increase with ψ. However, the hydrogen production initially increases with increase in temperature up to 800 °C and then becomes nearly asymptotic. The HHV decreases rapidly with increase in temperature and energy input increases. Therefore, gasification in lower temperature region is observed to be economical in terms of a trade off between external energy input and HHV of the product gas.  相似文献   

12.
In this study, we utilize some experimental data taken from the literature, especially on the air-blown gasification characteristics of six different biomass fuels, namely almond shell (ASF), walnut pruning (WPF), rice straw (RSF), whole tree wood chips (WWF), sludge (SLF) and non-recyclable waste paper (NPF) in order to study the thermodynamic performance of an integrated gasifier–boiler power system for its hydrogen production. In this regard, both energy and exergy efficiencies of the system are investigated. The exergy contents of different biomass fuels are calculated to be ranging from 15.89 to 22.07 MJ/kg, respectively. The hydrogen concentrations based on the stack gases at the cyclone exit are determined to be between 7 and 18 (%v/v) for NPF and ASF. Also, percentages of combustible vary from 30% to 46%. The stack gas has physical and chemical exergies. The total specific exergy rates are calculated and illustrated. These values change from 3.54 to 6.41 MJ/kg. Then, two types of exergy efficiencies are calculated, such as that exergy efficiency 1 is examined via all system powers, exergy and efficiency 2 is calculated according to specific exergy rates of biomass fuels and product gases. While the exergy efficiencies 1 change between 4.33% and 11.89%, exergy efficiencies 2 vary from 18.33% to 39.64%. Also, irreversibilities range from 9.76 to 18.02 MJ/kg. Finally, we investigate how nitrogen contents of biomass fuels affect on energy and exergy efficiencies. The SLF has the highest amount of nitrogen content as 5.64% db while the NPF has the lowest one as 0.14% db. The minimum and maximum exergetic efficiencies belong to the same fuels. Obviously, the higher the nitrogen content the lower the efficiency based on an inverse ratio between exergy efficiency and nitrogen content.  相似文献   

13.
Exergy analysis of hydrogen production from steam gasification of biomass was reviewed in this study. The effects of the main parameters (biomass characteristics, particle size, gasification temperature, steam/biomass ratio, steam flow rate, reaction catalyst, and residence time) on the exergy efficiency were presented and discussed. The results show that the exergy efficiency of hydrogen production from steam gasification of biomass is mainly determined by the H2 yield and the chemical exergy of biomass. Increases in gasification temperatures improve the exergy efficiency whereas increases in particle sizes generally decrease the exergy efficiency. Generally, both steam/biomass ratio and steam flow rate initially increases and finally decreases the exergy efficiency. A reaction catalyst may have positive, negative or negligible effect on the exergy efficiency, whereas residence time generally has slight effect on the exergy efficiency.  相似文献   

14.
In this paper, waste tires are comparatively studied and assessed as a feedstock relative to coal and coconut char. An Integrated Gasification Combined Cycle (IGCC) is developed by using the Aspen Plus to assess the suggested gasification feedstocks based on their carbon dioxide emissions and hydrogen production to feed rate ratios. Note that many tires are disposed of every year in North America and are stockpiled in the masses in landfills, which cause various environmental implications. In the present study, it is found that waste tires as a feedstock for gasification are a viable solution to this ever-rising problem. The hydrogen production to feed rate ratio is found to be 0.158 which is very competitive with high-quality coals and coconut char. The net power production from the combined cycle when tires are used as the feedstock for the gasifier is found to be 11.1kW. The optimal hydrogen production to feed rate ratio is also achieved at the maximum net power production rate. The energy and exergy efficiencies of the overall system are found to be 55.01% and 52.31% when the waste tires are used as a feedstock.  相似文献   

15.
This paper presents a simulative analysis of the energy efficiency of solar aided biomass gasification for pure hydrogen production. Solar heat has been considered as available at 250 °C in three gasification processes: i) gasification reactor followed by two water gas shift reactors and a pressure swing adsorber; ii) gasification reactor followed by an integrated membrane water gas shift reactor; iii) supercritical gasification reactor followed by two flash separators and a pressure swing adsorber.  相似文献   

16.
This paper presents the results from an experimental study on the energy conversion efficiency of producing hydrogen enriched syngas through uncatalyzed steam biomass gasification. Wood pellets were gasified using a 100 kWth fluidized bed gasifier at temperatures up to 850 °C. The syngas hydrogen concentration and cold gas efficiency were found to increase with both bed temperature and steam to biomass weight ratio, reaching a maximum of 51% and 124% respectively. The overall energy conversion to syngas (based on heating value) also increased with bed temperature but was inversely proportional to the steam to biomass ratio. The maximum energy conversion to syngas was found to be 68%. The conversion of energy to hydrogen (by heating value) increased with gasifier temperature and gas residence time, but was found to be independent of the S/B ratio. The maximum conversion of all energy sources to hydrogen was found to be 25%.  相似文献   

17.
The effect of fuel composition on the thermodynamic efficiency of gasifiers and gasification systems is studied. A chemical equilibrium model is used to describe the gasifier. It is shown that the equilibrium model presents the highest gasification efficiency that can be possibly attained for a given fuel. Gasification of fuels with varying composition of organic matter, in terms of O/C and H/C ratio as illustrated in a Van Krevelen diagram, is compared. It was found that exergy losses in gasifying wood (O/C ratio around 0.6) are larger than those for coal (O/C ratio around 0.2). At a gasification temperature of 927 °C, a fuel with O/C ratio below 0.4 is recommended, which corresponds to a lower heating value above 23 MJ/kg. For gasification at 1227 °C, a fuel with O/C ratio below 0.3 and lower heating value above 26 MJ/kg is preferred. It could thus be attractive to modify the properties of highly oxygenated biofuels prior to gasification, e.g. by separation of wood into its components and gasification of the lignin component, thermal pre-treatment, and/or mixing with coal in order to enhance the heating value of the gasifier fuel.  相似文献   

18.
In this paper, an integrated process of steam biomass gasification and a solid oxide fuel cell (SOFC) is investigated energetically to evaluate both electrical and energy efficiencies. This system is conceptualized as a combined system, based on steam biomass gasification and with a high temperature, pressurized SOFC. The SOFC system uses hydrogen obtained from steam sawdust gasification. Due to the utilization of the hydrogen content of steam in the reforming and shift reaction stages, the system efficiencies reach appreciable levels. This study essentially investigates the utilization of steam biomass gasification derived hydrogen that was produced from an earlier work in a system combines gasifier and SOFC to perform multi-duties (power and heat). A thermodynamic model is developed to explore a combination of steam biomass gasification, which produces 70–75 g of hydrogen/kg of biomass to fuel a planar SOFC, and generate both heat and power. Furthermore, processes are emerged in the system to increase the hydrogen yield by further processing the rest of gasification products: carbon monoxide, methane, char and tar. The conceptualized scheme combines SOFC operates at 1000 K and 1.2 bar and gasifier scheme based on steam biomass gasification which operates close to the atmospheric pressure, a temperature range of 1023–1423 K and a steam-biomass ratio of 0.8 kmol/kmol. A parametric study is also performed to evaluate the effect of various parameters such as hydrogen yield, air flow rate etc. on the system performance. The results show that SOFC with an efficiency of 50.3% operates in a good fit with the steam biomass gasification module with an efficiency, based on hydrogen yield, of 55.3%, and the overall system then works efficiently with an electric efficiency of ∼82%.  相似文献   

19.
In this paper, an integrated solid oxide fuel cell (SOFC) and biomass gasification system is modeled to study the effect of gasification agent (air, enriched oxygen and steam) on its performance. In the present modeling, a heat transfer model for SOFC and thermodynamic models for the rest of the components are used. In addition, exergy balances are written for the system components. The results show that using steam as the gasification agent yields the highest electrical efficiency (41.8%), power-to-heat ratio (4.649), and exergetic efficiency (39.1%), but the lowest fuel utilization efficiency (50.8%). In addition, the exergy destruction is found to be the highest at the gasifier for the air and enriched oxygen gasification cases and the heat exchanger that supplies heat to the air entering the SOFC for the steam gasification case.  相似文献   

20.
More efficient biomass gasification via torrefaction   总被引:1,自引:0,他引:1  
Wood torrefaction is a mild pyrolysis process that improves the fuel properties of wood. At temperatures between 230 and 300 °C, the hemicellulose fraction of the wood decomposes, so that torrefied wood and volatiles are formed. Mass and energy balances for torrefaction experiments at 250 and 300 °C are presented. Advantages of torrefaction as a pre-treatment prior to gasification are demonstrated. Three concepts are compared: air-blown gasification of wood, air-blown gasification of torrefied wood (both at a temperature of 950 °C in a circulating fluidized bed) and oxygen-blown gasification of torrefied wood (at a temperature of 1200 °C in an entrained flow gasifier), all at atmospheric pressure. The overall exergetic efficiency of air-blown gasification of torrefied wood was found to be lower than that of wood, because the volatiles produced in the torrefaction step are not utilized. For the entrained flow gasifier, the volatiles can be introduced into the hot product gas stream as a ‘chemical quench’. The overall efficiency of such a process scheme is comparable to direct gasification of wood, but more exergy is conserved in as chemical exergy in the product gas (72.6% versus 68.6%). This novel method to improve the efficiency of biomass gasification is promising; therefore, practical demonstration is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号