共查询到20条相似文献,搜索用时 0 毫秒
1.
Yuan Liu Mrinalini Mishra Yi-Hong Chen Tsong-Pyng Perng 《International Journal of Hydrogen Energy》2018,43(52):23255-23261
The hydrogen production rates from deionized water and 20% methanol solution, with or without the presence of Ta3N5, WO3, and the indirect Z-scheme Ta3N5/WO3, were investigated. Under irradiation of a 300 W Xe lamp, all of these three catalysts assisted hydrogen generation in deionized water. In the methanol solution, Ta3N5, and WO3 reduced the hydrogen generation, but Ta3N5/WO3 significantly enhanced the hydrogen production rate by seven times. Under visible light irradiation, the effects of the three catalysts are different from those under full spectrum irradiation. The mechanisms based on the competition of methanol decomposition and water reduction in the presence of catalyst under different irradiation conditions are proposed to explain the different hydrogen generation behaviors. 相似文献
2.
J. Vancoillie J. DemuynckL. Sileghem M. Van De GinsteS. Verhelst 《International Journal of Hydrogen Energy》2012
The use of hydrogen derived methanol in spark-ignition engines forms a promising approach to decarbonizing transport and securing domestic energy supply. Methanol can be renewably produced from hydrogen in combination with biomass or CO2 from the atmosphere and flue gases. From well to tank studies it appears that hydrogen derived methanol compares favourably with liquid or compressed hydrogen both in terms of production cost and energy efficiency. Since existing well to wheel studies are based on outdated technology, this paper tries to provide efficiency figures for state-of-the-art hydrogen and methanol engines using published data and measurements on our own flex-fuel engine. 相似文献
3.
Jiasheng Wang Shumin Han Wei Zhang Dan Liang Yuan Li Xin Zhao Ruibing Wang 《International Journal of Hydrogen Energy》2013
A 2LiBH4–MgH2–MoS2 composite was prepared by solid-state ball milling, and the effects of MoS2 as an additive on the hydrogen storage properties of 2LiBH4–MgH2 system together with the corresponding mechanism were investigated. As shown in the TG–DSC and MS results, with the addition of 20 wt.% of MoS2, the onset dehydrogenation temperature is reduced to 206 °C, which is 113 °C lower than that of the pristine 2LiBH4–MgH2 system. Meanwhile, the total dehydrogenation amount can be increased from 9.26 wt.% to 10.47 wt.%, and no gas impurities such as B2H6 and H2S are released. Furthermore, MoS2 improves the dehydrogenation kinetics, and lowers the activation energy (Ea) 34.49 kJ mol−1 of the dehydrogenation reaction between Mg and LiBH4 to a value lower than that of the pristine 2LiBH4–MgH2 sample. According to the XRD test, Li2S and MoB2 are formed by the reaction between LiBH4 and MoS2, which act as catalysts and are responsible for the improved hydrogen storage properties of the 2LiBH4–MgH2 system. 相似文献
4.
Santosh K. Paidi Amrutha Bhavaraju Mohammad Akram Sudarshan Kumar 《International Journal of Hydrogen Energy》2013
The laminar burning velocities of H2–air mixtures diluted with N2 or CO2 gas at high temperatures were obtained from planar flames observed in externally heated diverging channels. Experiments were conducted for an equivalence ratio range of 0.8–1.3 and temperature range of 350–600 K with various dilution rates. In addition, computational predictions for burning velocities and their comparison with experimental results and detailed flame structures have been presented. Sensitivity analysis was carried out to identify important reactions and their contribution to the laminar burning velocity. The computational predictions are in reasonably good agreement with the present experimental data (especially for N2 dilution case). The burning velocity maxima was observed for slightly rich mixtures and this maxima was found to shift to higher equivalence ratios (Ф) with a decrease in the dilution. The effect of CO2 dilution was more profound than N2 dilution in reducing the burning velocity of mixtures at higher temperatures. 相似文献
5.
The production of hydrogen from the two-stage pyrolysis–gasification of polypropylene using a Ni/CeO2/ZSM-5 catalyst has been investigated. Experiments were conducted on CeO2 loading, calcination temperature and Ni loading of the Ni/CeO2/ZSM-5 catalyst in relation to hydrogen production. The results indicated that with increasing CeO2 loading from 5 to 30 wt.% for the 10 wt.% Ni/CeO2/ZSM-5 catalyst calcined at 750 °C, hydrogen concentration in the gas product and the theoretical potential hydrogen production were decreased from 63.0 to 49.8 vol.% and 50.4 to 21.6 wt.%, respectively. In addition, the amount of coke deposited on the catalyst was reduced from 9.5 to 6.2 wt.%. The calcination temperature had little influence on hydrogen production for the catalyst containing 5 wt.% of CeO2. However, for the 10 wt.% Ni/CeO2/ZSM-5 catalyst with a CeO2 content of 10 or 30 wt.%, the catalytic activities reduced when the calcination temperature was increased from 500 to 750 °C. The SEM results showed that large amounts of filamentous carbons were formed on the surface of the catalysts. The investigation of different Ni content indicates that the Ni/CeO2/ZSM-5 ((2-10)-5-500) catalyst containing 2 wt.% Ni showed poor catalytic activity in relation to the pyrolysis–gasification of polypropylene according to the theoretical potential H2 production (7.2 wt.%). Increasing the Ni loading to 5 or 10 wt.% in the Ni/CeO2/ZSM-5 ((2-10)-5-500) catalyst, high potential hydrogen production was obtained. 相似文献
6.
Michael U. Niemann Sesha S. Srinivasan Ashok Kumar Elias K. Stefanakos D. Yogi Goswami Kimberly McGrath 《International Journal of Hydrogen Energy》2009
In this article, we investigate the ternary LiNH2–MgH2–LiBH4 hydrogen storage system by adopting various processing reaction pathways. The stoichiometric ratio of LiNH2:MgH2:LiBH4 is kept constant with a 2:1:1 molar ratio. All samples are prepared using solid-state mechano-chemical synthesis with a constant rotational speed, but with varying milling duration. Furthermore, the order of addition of parent compounds as well as the crystallite size of MgH2 are varied before milling. All samples are intimate mixtures of Li–B–N–H quaternary hydride phase with MgH2, as evidenced by XRD and FTIR measurements. It is found that the samples with MgH2 crystallite sizes of approximately 10 nm exhibit lower initial hydrogen release at a temperature of 150 °C. Furthermore, it is observed that the crystallite size of Li–B–N–H has a significant effect on the amount of hydrogen release with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160 °C and the other around 300 °C. The main hydrogen release temperature is reduced from 310 °C to 270 °C, while hydrogen is first reversibly released at temperatures as low as 150 °C with a total hydrogen capacity of ∼6 wt.%. Detailed thermal, capacity, structural and microstructural properties are discussed and correlated with the activation energies of these materials. 相似文献
7.
Xugang Zhang Zhinian LiFang Lv Hualing LiJing Mi Shumao WangXiaopeng Liu Lijun Jiang 《International Journal of Hydrogen Energy》2010
Significant improvements in the hydrogen absorption/desorption properties of the 2LiNH2–1.1MgH2–0.1LiBH4 composite have been achieved by adding 3wt% ZrCo hydride. The composite can absorb 5.3wt% hydrogen under 7.0 MPa hydrogen pressure in 10 min and desorb 3.75wt% hydrogen under 0.1 MPa H2 pressure in 60 min at 150 °C, compared with 2.75wt% and 1.67wt% hydrogen under the same hydrogenation/dehydrogenation conditions without the ZrCo hydride addition, respectively. TPD measurements showed that the dehydrogenation temperature of the ZrCo hydride-doped sample was decreased about 10 °C compared to that of the pristine sample. It is concluded that both the homogeneous distribution of ZrCo particles in the matrix observed by SEM and EDS and the destabilized N–H bonds detected by IR spectrum are the main reasons for the improvement of H-cycling kinetics of the 2LiNH2–1.1MgH2–0.1LiBH4 system. 相似文献
8.
This viewpoint demonstrates that CO2 emission intensity is not comparable if we use current theoretical proofs and the method of empirical analysis. 相似文献
9.
10.
Ni/γ-Al2O3 catalyst was prepared by direct treatment of Ni(NO3)2/γ-Al2O3 precursor with dielectric barrier discharge (DBD) hydrogen plasma at different input powers, characterized by XRD, H2-TPR, CO2-TPD, N2 adsorption and TEM, respectively, and used as the catalyst for CO2 reforming of methane (CRM). The results showed that the input power obviously affected the reduction degree and catalytic performances of catalysts. Low input power under 40 W mainly resulted in the decomposition of nickel nitrate into Ni oxides. The reduction degree, catalytic activity and stability increase with the input power. Similar catalytic performances in CRM reaction can be obtained when the power exceeds 80 W. Compared with the Ni/Al2O3 catalyst prepared by traditional method, Ni/γ-Al2O3 samples prepared by H2 DBD plasma exhibit better activities, stability and anti-carbon deposit performances. It is mainly ascribed to smaller Ni particle size, more basic sites and weaker basicity. The increase of Ni particle sizes due to the sintering at high temperature results in the decrease of catalytic activities and coke formation. 相似文献
11.
In the present study, we employed a multi-component combination strategy to constitute an AB/LiNH2/LiBH4 composite system. Our study found that mechanically milling the AB/LiNH2/LiBH4 mixture in a 1:1:1 molar ratio resulted in the formation of LiNH2BH3 (LiAB) and new crystalline phase(s). A spectral study of the post-milled and the relevant samples suggests that the new phase(s) is likely ammoniate(s) with a formula of Li2−x(NH3)(NH2BH3)1−x(BH4) (0 < x < 1). The decomposition behaviors of the Li2−x(NH3)(NH2BH3)1−x(BH4)/xLiAB composite were examined using thermal analysis and volumetric method in a wide temperature range. It was found that the composite exhibited advantageous dehydrogenation properties over LiAB and LiAB·NH3 at moderate temperatures. For example, it can release ∼7.1 wt% H2 of purity at temperature as low as 60 °C, with both the dehydrogenation rate and extent far exceeding that of LiAB and LiAB·NH3. A selectively deuterated composite sample has been prepared and examined to gain insight into the dehydrogenation mechanism of the Li2−x(NH3)(NH2BH3)1−x(BH4)/xLiAB composite. It was found that the LiBH4 component does not participate in the dehydrogenation reaction at moderate temperatures, but plays a key role in strengthening the coordination of NH3. This is believed to be a major mechanistic reason for the favorable dehydrogenation property of the composite at moderate temperatures. 相似文献
12.
V. Ratna Kishore Ringkhang MuchaharyAnjan Ray M.R. Ravi 《International Journal of Hydrogen Energy》2009
Global warming due to CO2 emissions has led to the projection of hydrogen as an important fuel for future. A lot of research has been going on to design combustion appliances for hydrogen as fuel. This has necessitated fundamental research on combustion characteristics of hydrogen fuel. In this work, a combination of experiments and computational simulations was employed to study the effects of diluents (CO2, N2, and Ar) on the laminar burning velocity of premixed hydrogen/oxygen flames using the heat flux method. The experiments were conducted to measure laminar burning velocity for a range of equivalence ratios at atmospheric pressure and temperature (300 K) with reactant mixtures containing varying concentrations of CO2, N2, and Ar as diluents. Measured burning velocities were compared with computed results obtained from one-dimensional laminar premixed flame code PREMIX with detailed chemical kinetics and good agreement was obtained. The effectiveness of diluents in reduction of laminar burning velocity for a given diluent concentration is in the increasing order of argon, nitrogen, carbon dioxide. This may be due to increased capabilities either to quench the reaction zone by increased specific heat or due to reduced transport rates. The lean and stoichiometric H2/O2/CO2 flames with 65% CO2 dilution exhibited cellular flame structures. Detailed three-dimensional simulation was performed to understand lean H2/O2/CO2 cellular flame structure and cell count from computed flame matched well with the experimental cellular flame. 相似文献
13.
Pei-Jun Wang Zhan-Zhao FangLai-Peng Ma Xiang-Dong KangPing Wang 《International Journal of Hydrogen Energy》2008
Single-walled carbon nanotubes (SWNTs) were mechanically milled with LiBH4/MgH2 mixture, and examined with respect to its effect on the reversible dehydrogenation properties of the Li–Mg–B–H system. Experimental results show that the addition of SWNTs results in an enhanced dehydriding rate and improved cyclic stability of the LiBH4/MgH2 composite. For example, the LiBH4/MgH2 composite with 10 wt% purified SWNTs additive can release nearly 10 wt% hydrogen within 20 min at 450 °C, with an average dehydriding rate over 2 times faster than that of the neat LiBH4/MgH2 sample. Based on the results of phase analysis and a series of designed experiments, the mechanism underlying the observed property improvement was discussed. 相似文献
14.
Ahmed Al-Fatesh Sunit Kumar Singh G.S. Kanade Hanan Atia Anis H. Fakeeha Ahmed A. Ibrahim Ahmed Mohamed El-Toni Nitin K. Labhasetwar 《International Journal of Hydrogen Energy》2018,43(27):12069-12080
Ni (2.5 wt%) and Co (2.5 wt%) supported over ZrO2/Al2O3 were prepared by following a hydrolytic co-precipitation method. The synthesized catalysts were further promoted by Rh incorporation (0.01–1.00 wt%) and tested for their catalytic performance for dry CO2 reforming, combined steam–CO2 reforming and oxy–CO2 reforming of methane for production of syngas. The catalysts were characterized by using N2 physical adsorption, XRD, H2–TPR, SEM, CO2–TPD, NH3–TPD, TEM and TGA. The results revealed that ZrO2 phase was in crystalline form in the catalysts along with amorphous Al oxides. Ni and Co were confirmed to be in their respective spinel phases that were reducible to metallic form at 800 °C under H2. Ni and Co were well dispersed with their nano-crystalline nature. The catalyst with 0.2% loading of Rh showed superior performance in the studied reactions for reforming of methane. This catalyst also showed good coke resistance ability for dry CO2 reforming reaction with 3.8 wt% of carbon formation during the reaction as compared to 11.6 wt% carbon formation over the catalyst without Rh. The catalyst performance was stable throughout the reaction time for CH4 conversions, irrespective of carbon formation with slight decline (~1%) in CO2 conversion. For dry CO2 reforming reaction, this catalyst showed good conversion for both CH4 and CO2 (67.6% and 71.8% respectively) with a H2/CO ratio of 0.84, while for the Oxy-CO2 reforming reaction, the activity was superior with CH4 and CO2 conversions (73.7% and 83.8% respectively) and H2/CO ratio of 1.05. 相似文献
15.
Proper solution of vapor liquid equilibrium (VLE) is essential to the design and operation of CO2 capture and storage system (CCS). According to the requirements of engineering applications, cubic equations of state (EOS) are preferable to predict VLE properties. This paper evaluates the reliabilities of five cubic EOSs, including PR, PT, RK, SRK and 3P1T for predicting VLE of CO2 and binary CO2-mixtures containing CH4, H2S, SO2, Ar, N2 or O2, based on the comparisons with the collected experimental data. Results show that SRK is superior in the calculations about the saturated pressure of pure CO2; while for the VLE properties of binary CO2-mixtures, PR, PT and SRK are generally superior to RK and 3P1T. The impacts of binary interaction parameter kij were also analyzed. kij has very clear effects on the calculating accuracy of an EOS in the property calculations of CO2-mixtures. In order to improve the calculation accuracy, the binary interaction parameter was calibrated for all of the studied EOSs regarding every binary CO2-mixture. 相似文献
16.
Juner Chen Yao ZhangZhitao Xiong Guotao WuHailiang Chu Teng HePing Chen 《International Journal of Hydrogen Energy》2012
Co-based catalyst can significantly improve the dehydrogenation kinetics of the eutectic composite of LiBH4–Mg(BH4)2 (1/1 M ratio). The onset hydrogen desorption temperature of the composite is at about 155 °C, which is ca. 245, 110 or 27 °C lower than that of LiBH4, Mg(BH4)2 or pristine LiBH4–Mg(BH4)2, respectively. Upon holding the samples at 270 °C, the Co catalyzed composite can release hydrogen at a rate 1.6 times faster than that of the pristine one. Electron Paramagnetic Resonance (EPR) characterization evidenced that Co was in a reduced state of Co+ which may serve as the functional species in catalyzing the dehydrogenation of the composite. 相似文献
17.
The aim of the article was to compare the pre- and post-combustion CO2 capture process employing the chemical absorption technology. The integration of the chemical absorption process before or after the coal combustion has an impact on the power plant efficiency because, in both cases, the thermal energy consumption for solvent regeneration is provided by the steam extracted from the low pressure steam turbine. The solvent used in this study for the CO2 capture was monoethanolamine (MEA) with a weight concentration of 30%. In the case of the pre-combustion integration, the coal gasification was analysed for different ratios air/fuel (A/F) in order to determine its influences on the syngas composition and consequently on the low heating value (LHV). The LHV maximum value (28 MJ/kg) was obtained for an A/F ratio of 0.5 kgair/kgfuel, for which the carbon dioxide concentration in the syngas was the highest (17.26%). But, considering the carbon dioxide capture, the useful energy (the difference between the thermal energy available with the syngas fuel and the thermal energy required for solvent regeneration) was minimal. The maximum value (61.59 MJ) for the useful energy was obtained for an A/F ratio of 4 kgair/kgfuel. Also, in both cases, the chemical absorption pre- and post-combustion process, the power plant efficiency decreases with the growth of the L/G ratio. In the case of the pre-combustion process, considering the CO2 capture efficiency of 90%, the L/G ratio obtained was of 2.55 molsolvent/molsyngas and the heat required for the solvent regeneration was of 2.18 GJ/tCO2. In the case of the post-combustion CO2 capture, for the same value of the CO2 capture efficiency, the L/G ratio obtained was of 1.13 molsolvent/molflue gas and the heat required was of 2.80 GJ/tCO2. However, the integration of the CO2 capture process in the power plant leads to reducing the global efficiency to 30% in the pre-combustion case and to 38% to the post-combustion case. 相似文献
18.
19.
Muhammad Asif Xin Gao Hongjie Lv Xinguo Xi Pengyu Dong 《International Journal of Hydrogen Energy》2018,43(5):2726-2741
Electricity and water from renewable hydropower plant are used as input for electrolysis unit to generate hydrogen, while CO2 is captured from 600 MW supercritical coal power plant using post-combustion chemical solvent based technology. The captured CO2 and H2 generated through electrolysis are used to synthesize methanol through catalytic thermo-chemical reaction. The methanol synthesis plant is designed, modeled and simulated using commercial software Aspen Plus®. The reactor is analyzed for two widely adopted kinetic models known as Graaf model and Vanden-Bossche (VB) model to predict the methanol yield and CO2 conversion. The results show that the methanol reactor based on Graaf kinetic model produced 0.66 tonne of methanol per tonne of CO2 utilized which is higher than that of the VB kinetic model where 0.6 tonne of methanol is produced per tonne of CO2 utilized. The economic analysis reveals that 1.2 billion USD annually is required at the present cost of both H2 production and CO2 abatement to utilize continuous emission of 3.2 million tonne of CO2 annually from 600 MW supercritical coal power unit to synthesize methanol. However, sensitivity analysis indicates that methanol production becomes feasible by adopting anyone of the route such as by increasing methanol production rate, by reducing levelised cost of hydrogen production, by reducing CO2 mitigation cost or by increasing the current market selling price of methanol and oxygen. 相似文献
20.
Hydrogen is usually presented as a promising energy carrier that has a major role to play in low carbon mobility, through the use of fuel cells. However, such a market is not expected in the short term. In the meantime, hydrogen may also contribute to reduce carbon emissions in diverse sectors: oil refining, low carbon mobility through the industrial deployment of advanced biofuels, natural gas consumption, and methanol production. According to the targeted market, objective costs are rather different; and so is the reachable mitigated CO2 amount. 相似文献