共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Xu Linji Liu Wenzong Wu Yining Wang Aijie Li Shuai Ji Wei 《International Journal of Hydrogen Energy》2013
Waste activated sludge (WAS), which is rich in organic substances, provides an energy resource. To recover hydrogen from the organic wastes, microbial electrolysis cell may be used as an efficient device. Since different extra applied voltages have significant effects on the efficiency of microbial electrolysis cell, this paper explores different extra applied voltages (0.6 V–1.2 V) affecting the utilization of sludge fermentation liquid (SFL) that is treated with synchronous double-frequency (28 + 40 kHz) and alkali coupling 72-bacth mesothermal anaerobic fermentation (35 °C). It is found that 0.8 V was the optimum extra applied voltage. With this voltage, the highest energy recovery efficiency will be 169 ± 1% and the peak of soluble chemical oxygen demand (SCOD) removal efficiency can be found at 51.4 ± 0.6%; Coulombic efficiency is 98.9 ± 1.0%. The order of complex matter consumption is found to be HAc > HPr > nHBu > nHVa > total carbohydrates > protein. The processing methods of synchronous double-frequency, alkaline, coupling with anaerobic fermentation are feasible for microbial electrolysis cell to transform large amount of waste activated sludge into energy. 相似文献
3.
Microbial fuel (MFCs) and electrolysis cells (MECs) can be used to recover energy directly as electricity or hydrogen from organic matter. Organic removal efficiencies and values of the different energy products were compared for MFCs and MECs fed winery or domestic wastewater. TCOD removal (%) and energy recoveries (kWh/kg-COD) were higher for MFCs than MECs with both wastewaters. At a cost of $4.51/kg-H2 for winery wastewater and $3.01/kg-H2 for domestic wastewater, the hydrogen produced using MECs cost less than the estimated merchant value of hydrogen ($6/kg-H2). 16S rRNA clone libraries indicated the predominance of Geobacter species in anodic microbial communities in MECs for both wastewaters, suggesting low current densities were the result of substrate limitations. The results of this study show that energy recovery and organic removal from wastewater are more effective with MFCs than MECs, but that hydrogen production from wastewater fed MECs can be cost effective. 相似文献
4.
《International Journal of Hydrogen Energy》2019,44(54):28841-28847
To explore the process kinetics of hydrogen evolution reaction (HER) on carbon-based Ni/NiO nanocomposite in the microbial electrolysis cells (MECs), the performance was systematically studied by different time-course sampling of five parallel single-chamber MECs operated under identical operating conditions, which included the electrochemical performance of anodes and cathodes, and the mechanism and kinetics of HER. It was hypothesized that the decreased performance of the nickel cathodes was due to corrosion and Ni dissolution. These results provide valuable insights into the effects of long-term operation on MEC performance. 相似文献
5.
Huajun Feng Lijie Huang Meizhen Wang Yingfeng Xu Dongsheng Shen Na Li Ting Chen Kun Guo 《International Journal of Hydrogen Energy》2018,43(37):17556-17561
In this study, we construct a scalable tubular single-chamber microbial electrolysis cell that using negative pressure (40.52 kPa) to enhance the hydrogen production. The impact of negative pressure on current production, hydrogen recovery, and microbial community of microbial electrolysis cells are investigated. Negative pressure could effectively enhance the hydrogen recovery and inhibit the growth of methanogens. Consequently, the microbial electrolysis cell operated under negative pressure achieves a maximum hydrogen production rate of 7.72 ± 0.06 L L?1 d?1, which is more than four times higher that of reactor running under normal pressure (1.51 ± 0.41 L L?1 d?1). Energy quantification shows that the electrical energy recovery under negative pressure is 146.98%, which is much higher than 95.00% under normal pressure. Therefore, negative pressure control is as effective for increasing hydrogen production and energy recovery in the scalable MEC, and has a great practical application prospect. However, negative pressure cannot knick out methanogens. Once negative pressure is removed, methanogens will quickly take over and after that applying negative pressure again can only partly inhibit methane production. 相似文献
6.
《International Journal of Hydrogen Energy》2019,44(2):652-660
High hydrogen production rate and energy recovery were accomplished in a tubular microbial electrolysis cell (MEC) equipped with a robust membrane electrode assembly (MEA). The current and the hydrogen production of non-flexible MEAs, simply fabricated by directly brushing a catalyst on a self-supporting tubular membrane, were compared with those of a typical MEA, where a cathode is physically combined with a membrane. Current of 34 ± 2 mA (1.79 ± 0.05 A/m2) and coulombic efficiency of 98.5 ± 1.0% were achieved in non-flexible MEAs, outperforming the typical MEA under fed-batch mode. The MEA, having a durable coating layer, also showed an enhanced hydrogen production rate and electric energy recovery with values of 0.18 ± 0.03 m3/m3-d and 151.9 ± 1.0%, respectively, even for low strength domestic wastewater (dWW) treatment in the continuous-flow mode. These outcomes were similarly maintained in the case of using seawater, which is a good candidate for an economical and environmentally suitable catholyte. 相似文献
7.
Yue Wang Wan-Qian Guo De-Feng Xing Jo-Shu Chang Nan-Qi Ren 《International Journal of Hydrogen Energy》2014
Molasses is by-product from sugar beet process and commonly used as raw material for ethanol production. However, the molasses wastewater possesses high level of chemical oxygen demand (COD), which needs to be properly treated before discharge. In this work, MEC technology, a promising method for hydrogen production from organic waste, was utilized to produce H2 from molasses wastewater. In this study, the feasibility of operating the MEC at low temperatures was evaluated since the average wastewater temperature in Harbin city is lower than 10 °C. In addition, the feasibility of using biocathode as an alternative to expensive platinum (Pt) as the cathode material was also examined. Both Pt catalyzed MECs and biocathodic MECs were operated at a low temperature of 9 °C. The overall hydrogen recovery of 72.2% (Eap = 0.6 V) was obtained when the Pt catalyst was used. In contrast, when a cheaper catalyst (biocathode; Eap = 0.6 V) was used, hydrogen can still be produced but at a lower overall hydrogen recovery of 45.4%. This study demonstrated that hydrogen could be generation from molasses wastewater at a low temperature using a cheaper cathode material (i.e., biocathode). 相似文献
8.
《International Journal of Hydrogen Energy》2019,44(4):2253-2257
Microbial electrolysis cell (MEC) is a bioelectrochemical technology that can produce hydrogen gas from various organic waste/wastewater. Extra voltage supply (>0.2 V) is required to overcome cathode overpotential for hydrogen evolution. In order to make MEC system more sustainable and practicable, it is necessary to minimize the external energy input or to develop other alternative energy sources. In this study, we aimed to improve the energy efficiency by intermittent energy supply to MECs (setting anode potential = −0.2 V). The overall gas production was increased up to ∼40% with intermittent energy input (on/off = 60/15sec) compared to control reactor. Cathodic hydrogen recovery was also increased from 62% for control MEC to 69–80% for intermittent voltage application. Energy efficiency was increased by 14–20% with intermittent energy input. These results show that intermittent voltage application is very effective not only for energy efficiency/recovery but also for hydrogen production as compared with continuous voltage application. 相似文献
9.
Flakey cobalt was successfully recovered from aqueous Co(II) with simultaneous hydrogen production in microbial electrolysis cells (MECs). At applied voltages of 0.3–0.5 V, the yields of 0.81 mol Co/mol COD and 1.21 ± 0.03–1.49 ± 0.11 mol H2/mol COD were achieved while the energy efficiency relative to the electrical input was 22.5 ± 0.1–43.2 ± 0.7% (cobalt) and 170 ± 12–262 ± 7% (hydrogen), and the overall energy efficiency relative to both the electrical input and the energy of the anodic substrate averaged 9.4% (cobalt) and 62.8% (hydrogen). Cathode accumulated flakey crystals were verified as cobalt using both a scanning electron microscope capable of energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction analysis (XRD). Dominant bacteria on the anodes and known as exoelectrogens or recalcitrant substance degraders included Geobacter uraniireducens, Comamonas nitrativorans, uncultured Geobacter sp., Acidovorax caeni, Pseudorhodoferax caeni, and Diaphorobacter nitroreducens. The evidence of influence factors including applied voltage, pH, solution conductivity, temperature and type of buffer can contribute to improving understanding of and optimizing cobalt recovery with simultaneous hydrogen production in MECs. 相似文献
10.
《International Journal of Hydrogen Energy》2021,46(75):37174-37191
Microbial electrolysis cell (MEC) is a promising reactor. However, currently, the reactor cannot be adapted for industrial-scale biohydrogen production. Nevertheless, this drawback can be overcome by modeling studies based on mathematical equations. The limitation of analytical instrumentation to record the non-linearity of the dynamic behavior for biohydrogen processes in an MEC has led to the introduction of computational approach that has the potential to reduce time constraints and optimize experimental costs. Reviews of comparative studies on bioelectrochemical models are widely reported, but there is less emphasis on the MEC model. Therefore, in this paper, a comprehensive review of the MEC mathematical model will be further discussed. The classification of the model with respect to the assumptions, model improvement, and extensive studies based on the model application will be critically analyzed to establish a methodology algorithm flow chart as a guideline for future implementation. 相似文献
11.
Platinum has excellent catalytic capabilities and is commonly used as cathode catalyst in microbial electrolysis cells (MECs). Its high cost, however, limits the practical applications of MECs. In this study, precious-metal-free cathodes were developed by electrodepositing NiMo and NiW on a carbon-fiber-weaved cloth material and evaluated in electrochemical cells and tubular MECs with cloth electrode assemblies (CEA). While similar performances were observed in electrochemical cells, NiMo cathode exhibited better performances than NiW cathode in MECs. At an applied voltage of 0.6 V, the MECs with NiMo cathode accomplished a hydrogen production rate of 2.0 m3/day/m3 at current density of 270 A/m3 (12 A/m2), which was 33% higher than that of the NiW MECs and slightly lower than that of the MECs with Pt catalyst (2.3 m3/day/m3). At an applied voltage of 0.4 V, the energy efficiencies based on the electrical energy input reached 240% for the NiMo MECs. These results demonstrated the great potential of using carbon cloth with Ni-alloy catalysts as a cathode material for MECs. The enhanced MEC performances also demonstrate the scale-up potential of the CEA structure, which can significantly reduce the electrode spacing and lower the internal resistance of MECs, thus increasing the hydrogen production rate. 相似文献
12.
《International Journal of Hydrogen Energy》2019,44(57):30024-30030
In this work, a dual-chamber microbial electrolysis cell (MEC) with concentric cylinders was fabricated to investigate hydrogen production of three different lignocellulosic materials via simultaneous saccharification and fermentation (SSF). The maximal hydrogen production rate (HPR) was 2.46 mmol/L/D with an energy recovery efficiency of 215.33 % and a total energy conversion efficiency of 11.29 %, and the maximal hydrogen volumetric yield was 28.67 L/kg from the mixed substrate. The concentrations of reducing sugar and organic acids, the pH, and the current in the MEC system during hydrogen production were monitored. The concentrations of reducing sugar, butyrate, lactate, formate, and acetate initially increased during SSF and then decreased due to hydrogen production. Moreover, the highest current was obtained from the mixed substrate, which means that the mixed substrates are beneficial to microbial growth and metabolism. These results suggest that lignocellulosic materials can be used as substrate in a low-energy-input dual-chamber MEC system for hydrogen production. 相似文献
13.
Scale-up of microbial fuel cells (MFCs) will require a better understanding of the effects of reactor architecture and operation mode on volumetric power densities. We compared the performance of a smaller MFC (SMFC, 28 mL) with a larger MFC (LMFC, 520 mL) in fed-batch mode. The SMFC produced 14 W m−3, consistent with previous reports for this reactor with an electrode spacing of 4 cm. The LMFC produced 16 W m−3, resulting from the lower average electrode spacing (2.6 cm) and the higher anode surface area per volume (150 m2 m−3 vs. 25 m2 m−3 for the SMFC). The effect of the larger anode surface area on power was shown to be relatively insignificant by adding graphite granules or using graphite fiber brushes in the LMFC anode chamber. Although the granules and graphite brushes increased the surface area by factors of 6 and 56, respectively, the maximum power density in the LMFC was only increased by 8% and 4%. In contrast, increasing the ionic strength of the LMFC from 100 to 300 mM using NaCl increased the power density by 25% to 20 W m−3. When the LMFC was operated in continuous flow mode, a maximum power density of 22 W m−3 was generated at a hydraulic retention time of 11.3 h. Although a thick biofilm was developed on the cathode surface in this reactor, the cathode potentials were not significantly affected at current densities <1.0 mA cm−2. These results demonstrate that power output can be maintained during reactor scale-up; increasing the anode surface area and biofilm formation on the cathode do not greatly affect reactor performance, and that electrode spacing is a key design factor in maximizing power generation. 相似文献
14.
The hydrogen production rate in a microbial electrolysis cell (MEC) using a non-buffered saline catholyte (NaCl) can be optimized through proper control of the initial anolyte pH and catholyte NaCl concentration. The highest hydrogen yield of 3.3 ± 0.4 mol H2/mole acetate and gas production rate of 2.2 ± 0.2 m3 H2/m3/d were achieved here with an initial anolyte pH = 9 and catholyte NaCl concentration of 98 mM. Further increases in the salt concentration substantially reduced the anolyte pH to as low as 4.6, resulting in reduced MEC performance due to pH inhibition of exoelectrogens. Cathodic hydrogen recovery was high (rcat > 90%) as hydrogen consumption by hydrogenotrophic methanogens was prevented by separating the anode and cathode chambers using a membrane. These results show that the MEC can be optimized for hydrogen production through proper choices in the concentration of a non-buffered saline catholyte and initial anolyte pH in two chamber MECs. 相似文献
15.
The bioelectrochemical generation of hydrogen in microbial electrolysis cells (MECs) is a promising technology with many bottlenecks to be solved. Among them, the proliferation of hydrogen scavengers drastically reduces the cell efficiency leading to unrealistic coulombic efficiencies (CE) and cathodic gas recoveries (rCAT). This work provides a novel theoretical approach to understand, through electron equivalent balances, the fate of hydrogen in these systems. It was validated with a long term operated single-chamber membrane-less MEC. In the short term, H2-recycling (i.e. hydrogen being derived to the anode) resulted in rCAT of only 4% and in CE up to 463%. The 80.5% of the current intensity came from H2-recycling and only the 19.5% from substrate oxidation. In the long term, methane was produced from hydrogen, thus decreasing rCAT to 0 (rCAT = 94.5% when considering methane production). CE was 74.5% suggesting that H2-recycling only took place when methanogenic activity was marginal. 相似文献
16.
Folusho F. Ajayi Kyoung-Yeol KimKyu-Jung Chae Mi-Jin ChoiSung-Youn Kim In-Seop ChangIn S. Kim 《International Journal of Hydrogen Energy》2009
Hydrogen production with light as an additional energy source in a microbial electrolysis cell (MEC) is described. A ruthenium-dye (N719) sensitized solar cell with an open circuit potential (Voc) of 602 mV was connected to the MEC. Hydrogen production was carried out by irradiating the DSSC connected across the MEC with a light intensity of 40 mW/cm2 and also with natural sunlight. The DSSC was stable during various batch experiments. The acetate conversion efficiency and the coulombic efficiency based on the average of first two batches were 30.5 ± 2.5% and 40 ± 2% respectively. The cathodic recovery efficiency ranged from 72% to 86% during repeated batch experiments with an average of 78 ± 2.5%. 相似文献
17.
Microbial electrolysis cells (MECs) have great potential as a technology for wastewater treatment in parallel to energy production. In this study we explore the feasibility of using a low-cost, membraneless MEC for domestic wastewater treatment and methane production in both batch and continuous modes. Low-strength wastewater can be successfully treated by means of an MEC, obtaining significant amounts of methane. The results also suggest that hydrogenotrophic methanogenesis reduce the incidence of homoacetogenic activity, thus improving the overall MEC performance. However, gas production rates are low and important aspects such as methane solubility in water still remain a challenge. Overall, MECs can offer competitive advantages not only for low-strength wastewater treatment but also as an aid to anaerobic methane production by improving the chemical oxygen demand (COD) removal and methane production rates. 相似文献
18.
Muhammad Hassan Ana Sotres Fernandez Isabel San Martin Bing Xie Antonio Moran 《International Journal of Hydrogen Energy》2018,43(29):13051-13063
This study investigates the potential opportunities of hydrogen evolution treating landfill leachate in a set of two microbial electrolysis cells (MEC-1 and 2) under 30 °C and 17 ± 3 °C temperatures, respectively. The system achieved a projected current density of 1000–1200 mA m?2 (MEC-1) and 530–755 mA m?2 (MEC-2) coupled with low cost hydrogen production rate of 0.148 L La?1 d?1 (MEC-1) and 0.04 L La?1 d?1 (MEC-2) at an applied voltage of 1.0 V. Current generation led to a maximum COD oxidation of 73 ± 8% (MEC-1) and 65 ± 7% (MEC-2) with ≥100% energy recovery. The system also exhibited a high hydrogen recovery (66–95%), pure hydrogen yield (98%) and tremendous working stability during two months of operation. Electroactive microbes such as Pseudomonadaceae, Geobacteraceae and Comamonadaceae were found in anodophilic biofim, along with Rhodospirillaceae and Rhodocyclaceae, which could be involved in hydrogen production. These results demonstrated an energy-efficient approach for hydrogen production coupled with pollutants removal. 相似文献
19.
Aijie Wang Wenzong Liu Nanqi Ren Jizhong Zhou Shaoan Cheng 《International Journal of Hydrogen Energy》2010,35(24):13481-13487
In order to optimize operations of microbial electrolysis cell (MEC) for hydrogen production, microbial anode potential (MAP) was analyzed as a function of factors in biofilm anode system, including pH, substrate and applied voltage. The results in “H” shape reactor showed that MAP reflected the information when any factor became limiting for hydrogen production. Commonly, hydrogen generation started around anode potential of −250 mV to −300 mV. While, higher current density and higher hydrogen rate were obtained when MAP went down to −400 mV or even lower in this study. Biofilm anode could work normally between pH 6.5 and 7.0, while the lowest anode potential appeared around 6.8–7.0. However, when pH was lower 6.0 or substrate concentration was less than 50 mg L−1 in anode chamber, MAP went up to −300 mV or above, leading to hydrogen reduction. Applied voltage did not affect MAP much during the process of hydrogen production. Anode potential analysis also showed that planktonic bacteria in suspended solution presented positive effects on biofilm anode system and they contributed to enhance electron transfer by reducing internal resistance and lowering minimum voltage needed for hydrogen production to some extent. 相似文献
20.
S. Hrapovic M.-F. ManuelJ.H.T. Luong S.R. GuiotB. Tartakovsky 《International Journal of Hydrogen Energy》2010
Gas diffusion cathodes with electrodeposited nickel (Ni) particles have been developed and tested for hydrogen production in a continuous flow microbial electrolysis cell (MEC). A high catalytic activity of electrodeposited Ni particles in such a MEC was obtained without a proton exchange membrane, i.e. under direct cathode exposure to anodic liquid. Co-electrodeposition of Pt and Ni particles did not improve any further hydrogen production. The maximum hydrogen production rate was 5.4 L/LR/day, corresponding to Ni loads between 0.2 and 0.4 mg cm−2. Continuous MEC operation demonstrated stable hydrogen production for over one month. Owing to the fast hydrogen transport through the cathodic gas diffusion layer, the loss of hydrogen production to methanogenic activity was minimal, generally with less than 5% methane in the off-gas. Overall, gas diffusion cathodes with electrodeposited Ni particles demonstrated excellent stability for hydrogen production compared to expensive Pt cathodes. 相似文献