首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The addition of hydrogen is an effective way for improving the gasoline engine performance at lean conditions. In this paper, an experiment aiming at studying the effect of hydrogen addition on combustion and emissions characteristics of a spark-ignited (SI) gasoline engine under various loads and lean conditions was carried out. An electronically controlled hydrogen port-injection system was added to the original engine while keeping the gasoline injection system unchanged. A hybrid electronic control unit was developed and applied to govern the spark timings, injection timings and durations of hydrogen and gasoline. The test was performed at a constant engine speed of 1400 rpm, which could represent the engine speed in the typical city-driving conditions with a heavy traffic. Two hydrogen volume fractions in the total intake of 0% and 3% were achieved through adjusting the hydrogen injection duration according to the air flow rate. At a specified hydrogen addition level, gasoline flow rate was decreased to ensure that the excess air ratios were kept at 1.2 and 1.4, respectively. For a given hydrogen blending fraction and excess air ratio, the engine load, which was represented by the intake manifolds absolute pressure (MAP), was increased by increasing the opening of the throttle valve. The spark timing for maximum brake torque (MBT) was adopted for all tests. The experimental results demonstrated that the engine brake mean effective pressure (Bmep) was increased after hydrogen addition only at low load conditions. However, at high engine loads, the hybrid hydrogen–gasoline engine (HHGE) produced smaller Bmep than the original engine. The engine brake thermal efficiency was distinctly raised with the increase of MAP for both the original engine and the HHGE. The coefficient of variation in indicated mean effective pressure (COVimep) for the HHGE was reduced with the increase of engine load. The addition of hydrogen was effective on improving gasoline engine operating instability at low load and lean conditions. HC and CO emissions were decreased and NOx emissions were increased with the increase of engine load. The influence of engine load on CO2 emission was insignificant. All in all, the effect of hydrogen addition on improving engine combustion and emissions performance was more pronounced at low loads than at high loads.  相似文献   

2.
Lean combustion is an effective way for improving the spark-ignited (SI) engine performance. Unfortunately, due to the narrow flammability of gasoline, the pure gasoline-fueled engines sometimes suffer partial burning or misfire at very lean conditions. Hydrogen has many excellent combustion properties that can be used to extend the gasoline engine lean burn limit and improve the gasoline engine performance at lean conditions. In this paper, a 1.6 L port fuel injection gasoline engine was modified to be a hybrid hydrogen–gasoline engine (HHGE) fueled with the hydrogen–gasoline mixture by mounting an electronically controlled hydrogen injection system on the intake manifolds while keeping the original gasoline injection system unchanged. A self-developed hybrid electronic control unit (HECU) was used to flexibly adjust injection timings and durations of gasoline and hydrogen. Engine tests were conducted at 1400 rpm and a manifolds absolute pressure (MAP) of 61.5 kPa to investigate the performance of an HHGE at lean burn limits. Three hydrogen volume fractions in the total intake gas of 1%, 3% and 4.5% were adopted. For a specified hydrogen volume fraction, the gasoline flow rate was gradually reduced until the engine reached the lean burn limit at which the coefficient of variation in indicated mean effective pressure (COVimep) was 10%. The test results showed that COVimep at the same excess air ratio was obviously reduced with the increase of hydrogen enrichment level. The excess air ratio at the lean burn limit was extended from 1.45 of the original engine to 2.55 of the 4.5% HHGE. The engine brake thermal efficiency, CO, HC and NOx emissions at lean burn limits were also improved for the HHGE.  相似文献   

3.
Hydrogen addition is an effective way for improving the performance of spark-ignited (SI) engines at stoichiometric and especially lean conditions. Spark timing also heavily influences the SI engine performance. This paper experimentally investigated the effect of spark timing on performance of a hydrogen-enriched gasoline engine at lean conditions. The experiment was carried out on a four-cylinder, port-injection gasoline engine which was modified to be an electronically controlled hybrid hydrogen–gasoline engine (HHGE) by adding a hydrogen port-injection system on the intake manifolds while keeping the original gasoline injection system unchanged. A hybrid electronic control unit (HECU) was developed to govern the injection timings and durations of hydrogen and gasoline to enforce the timely mixing of hydrogen and gasoline in the intake ports at the expected blending levels and excess air ratios. During the test, the engine speed was fixed at 1400 rpm and the manifolds absolute pressure (MAP) was kept at 61.5 kPa. The hydrogen volume fraction in the intake was increased from 0% to 3% through adjusting the hydrogen injection duration. For a specified hydrogen addition level, gasoline injection duration was reduced to ensure the engine operating at two excess air ratios of 1.2 and 1.4, respectively. The spark timing for a specified hydrogen addition level and excess air ratio was varied from 20 to 50 °CA BTDC with an interval of 2 °CA. The test results showed that the indicated mean effective pressure (Imep) first increased and then decreased with the increase of spark advance. The optimum spark timing for the max. Imep (OST) was retarded for the HHGE at a specified excess air ratio. The max. indicated thermal efficiency appeared at the OST. Flame development period was shortened whereas flame propagation period was prolonged with the decrease of spark advance. The coefficient of variation in indicated mean effective pressure generally gained its minimum value at the OST. HC and NOx emissions were continuously decreased with the retarding of spark timing. However, the effect of spark timing on CO emission was found insignificant.  相似文献   

4.
Hydrogen on-board fuel reforming has been identified as a waste energy recovery technology with potential to improve Internal combustion engines (ICE) efficiency. Additionally, can help to reduce CO2, NOx and particulate matter (PM) emissions. As this thermochemical energy is recovered from the hot exhaust stream and used in an efficient way by endothermic catalytic reforming of petrol mixed with a fraction of the engine exhaust gas. The hydrogen-rich reformate has higher enthalpy than the petrol fed to the reformer and is recirculated to the intake manifold, which will be called reformed exhaust gas recirculation (rEGR).The rEGR system has been simulated by supplying hydrogen (H2) and carbon monoxide (CO) into a conventional Exhaust Gas Recirculation (EGR) system. The hydrogen and CO concentrations in the rEGR stream were selected to be achievable in practice at typical gasoline exhaust temperatures (temperatures between 300 and 600 °C). A special attention has been paid on comparing rEGR to the baseline ICE, and to conventional EGR. The results demonstrate the potential of rEGR to simultaneously increase thermal efficiency, reduce gaseous emissions and decrease PM formation.Complete fuel reformation can increase the calorific value of the fuel by 28%. This energy can be provided by the waste heat in the exhaust and so it is ideal for combination with a gasoline engine with its high engine-out exhaust temperatures.The aim of this work is to demonstrate that exhaust gas fuel reforming on an engine is possible and is commercially viable. Also, this paper demonstrates how the combustion of reformate in a direct injection gasoline engine via reformed Exhaust Gas Recirculation (rEGR) can be beneficial to engine performance and emissions.  相似文献   

5.
In this paper, the performance and emission characteristics of a conventional twin-cylinder, four stroke, spark-ignited (SI) engine that is running with methane–hydrogen blends have been investigated experimentally. The engine was modified to realize hydrogen port injection by installing hydrogen feeding line in the intake manifolds. The experimental results have been demonstrated that the brake specific fuel consumption (BSFC) increased with the increase of hydrogen fraction in fuel blends at low speeds. On the other hand, as hydrogen percentage in the mixture increased, BSFC values decreased at high speeds. Furthermore, brake thermal efficiencies were found to decrease with the increase in percentage of hydrogen added. In addition, it has been found that CO2, NOx and HC emissions decrease with increasing hydrogen. However, CO emissions tended to increase with the addition of hydrogen generally increase. It has been showed that hydrogen is a very good choice as a gasoline engine fuel. The data are also very useful for operational changes needed to optimize the hydrogen fuelled SI engine design.  相似文献   

6.
The purpose of this study is to experimentally investigate the performance, combustion and pollutant emissions of a multipoint electronic fuel injection gasoline engine using methanol–gasoline blends. The results indicated that, with the increase in methanol (CH3OH) content in the blends, the maximum engine torque and power are slightly decreased, the brake specific fuel consumption is evidently increased and brake thermal efficiency remains almost identical. At low engine loads and speeds, gasoline is observed to have faster combustion velocity, but the blends are faster at high engine loads and speeds. The carbon monoxide of the blends is slightly lower, hydrocarbon is slightly higher at high engine loads and nitrogen oxide is lower for M10 at low engine loads. The emissions of formaldehyde are evidently higher with the increase in CH3OH content, but CH3OH and acetaldehyde emissions of the blends show little variation.  相似文献   

7.
Based on CFD software and reaction kinetics software, multi-dimensional CFD Model coupled with detail reaction kinetics is built to study the combustion process in H2/CNG Engine. Detail reaction mechanism is used to simulate the chemistry of combustion and a combustion model considering the turbulent mixing effects was also applied. To reduce the computation time, the coupled software is reprogrammed to have the function of parallel computing and the revised software is computed in a Massively Parallel Processor. The model is validated using the experiment data from a modified diesel engine. The results show: cylinder pressure from simulation has a good agreement with experiment data and CO and NOx emission is well predicted by the model in a wide range.  相似文献   

8.
An experimental investigation on the influence of different hydrogen fractions and EGR rates on the performance and emissions of a spark-ignition engine was conducted. The results show that large EGR introduction decreases the engine power output. However, hydrogen addition can increase the power output at large EGR operation. Effective thermal efficiency shows an increasing trend at small EGR rate and a decreasing trend with further increase of EGR rate. In the case of small EGR rate, effective thermal efficiency is decreased with the increase of hydrogen fraction; while in the case of large EGR rate, thermal efficiency is increased with increasing of hydrogen fraction. For a specified hydrogen fraction, NOx concentration is decreased with the increase of EGR rate and this effectiveness becomes more obviously at high hydrogen fraction. HC emission is increased with the increase of EGR rate and it decreases with the increase of hydrogen fraction. CO and CO2 emissions show little variations with EGR rate, but they decrease with the increase of hydrogen fraction. The study shows that natural gas–hydrogen blend combining with EGR can realize high-efficiency and low-emission spark-ignition engine.  相似文献   

9.
We investigated the generating efficiency and pollutant emissions of a four-stroke spark-ignition gas engine generator operating on biogas–hydrogen blends of varying excess air ratios and hydrogen concentrations. Experiments were carried out at a constant engine speed of 1200 rpm and a constant electric power output of 10 kW. The experimental results showed that the peak values of generating efficiency, maximum cylinder pressure, and NOx emissions were elevated at an excess air ratio of around 1.2 as the hydrogen concentration was increased. CO2 emissions decreased as the excess air ratio and hydrogen concentration increased, due to lean-burn conditions and hydrogen combustion. An efficiency per NOx emissions ratio (EPN) was defined to consider the relationship between the generating efficiency and NOx emissions. A maximum EPN value of 0.7502 was obtained with a hydrogen concentration of 15%, for an excess air ratio of 2.0. At this EPN value, the NOx and CO2 emissions were 39 ppm and 1678.32 g/kWh, respectively, and the generating efficiency was 29.26%. These results demonstrated that the addition of hydrogen to biogas enabled the effective generation of electricity using a gas engine generator through lean-burn combustion.  相似文献   

10.
In this experimental study we focused our interest on comparing the effect of lower and higher molecular mass alcohol–gasoline-blended fuels on the regulated emissions emitted by a small non-road spark-ignition engine. Twenty-one test fuels were used in this experimental study that included gasoline as a reference as well as low and high molecular mass alcohol–gasoline blends containing 5%, 10%, 20% and 40% v/v. In exhaust gases that originated from alcohol gasoline test fuels, low CO/HC and high CO2/NOx emissions were observed as the total percentage of alcohol in the blend increased. Methanol–gasoline blends seemed to achieve good combustion efficiency, but the engine will require a catalytic converter against high NOx emissions. Butanol–gasoline blends in several cases gave lower emissions in comparison with the ethanol and propanol–gasoline blends. Finally, the pentanol–gasoline blends showed exactly the same emission patterns as those of neat gasoline.  相似文献   

11.
This paper presents the results obtained of a compression ignition engine (modified to run on spark ignition mode) fuelled with hydrogen–ethanol dual fuel combination with different percentage substitutions of hydrogen (0–80% by volume with an increment of 20%) under variable compression ratio conditions (i.e. 7:1, 9:1 and 11:1) by varying the spark ignition timing at a constant speed of 1500 rpm. The various engine performance parameters studied were brake specific fuel consumption, brake mean effective pressure and brake thermal efficiency. It was found from the present study that for specific ignition timing the brake mean effective pressure and the brake thermal efficiency increases with the increase of hydrogen fraction in ethanol and all hydrogen substitutions showed the maximum increase in brake thermal efficiency and reduction in brake specific fuel consumption value at around 25° CA advanced ignition timing. The best operating conditions were obtained at a compression ratio of 11:1 and the optimum fuel combination was found to be 60–80% hydrogen substitution to ethanol.  相似文献   

12.
Combustion behaviors of a direct injection engine operating on various fractions of natural gas–hydrogen blends were investigated. The results showed that the brake effective thermal efficiency increased with the increase of hydrogen fraction at low and medium engine loads and high thermal efficiency was maintained at the high engine load. The phase of the heat release curve advanced with the increase of hydrogen fraction in the blends. The rapid combustion duration decreased and the heat release rate increased with the increase of hydrogen fraction in the blends. This phenomenon was more obviously at the low engine speed, suggesting that the effect of hydrogen addition on the enhancement of burning velocity plays more important role at relatively low cylinder air motion. The maximum mean gas temperature and the maximum rate of pressure rise increased remarkably when the hydrogen volumetric fraction exceeds 20% as the burning velocity increases exponentially with the increase of hydrogen fraction in fuel blends. Exhaust HC and CO2CO2 concentrations decreased with the increase of the hydrogen fraction in fuel blends. Exhaust NOxNOx concentration increased with the increase of hydrogen fraction at high engine load. The study suggested that the optimum hydrogen volumetric fraction in natural gas–hydrogen blends is around 20% to get the compromise in both engine performance and emissions.  相似文献   

13.
An experimental investigation on the application of the blends of ethanol with diesel to a diesel engine was carried out. First, the solubility of ethanol and diesel was conducted with and without the additive of normal butanol (n-butanol). Furthermore, experimental tests were carried out to study the performance and emissions of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with n-butanol to replace pure diesel as the fuel for diesel engine; the thermal efficiencies of the engine fuelled by the blends were comparable with that fuelled by diesel, with some increase of fuel consumptions, which is due to the lower heating value of ethanol. The characteristics of the emissions were also studied. Fuelled by the blends, it is found that the smoke emissions from the engine fuelled by the blends were all lower than that fuelled by diesel; the carbon monoxide (CO) were reduced when the engine ran at and above its half loads, but were increased at low loads and low speed; the hydrocarbon (HC) emissions were all higher except for the top loads at high speed; the nitrogen oxides (NOx) emissions were different for different speeds, loads and blends.  相似文献   

14.
Fuel/air mixing effects in a premixer have been examined to investigate the combustion characteristics, such as the emission of NOx and CO, under simulated lean premixed gas turbine combustor conditions at normal and elevated pressures of up to 3.5 bar with air preheat temperature of 450 K. The results obtained have been compared with a diffusion flame type gas turbine combustor for emission characteristics. The results show that the NOx emission is profoundly affected by the mixing between fuel and air in the combustor. NOx emission is lowered by supplying uniform fuel/air gas mixture to the combustor and the NOx emission reduces with decrease in residence time of the hot gases in the combustor. The NOx emission level of the lean premixed combustor is a strong function of equivalence ratio and the dependency is smaller for a traditional diffusion flame combustor under the examined experimental conditions. Furthermore, the recirculation flow, affected by dome angle of combustor, reduces the high temperature reaction zone or hot spot in the combustor, thus reducing the NOx emission levels.  相似文献   

15.
16.
The combustion stability (extinction) limits and nitrogen oxide (NOx) emissions of nonpremixed ammonia (NH3)–hydrogen (H2)–air flames at normal temperature and pressure are studied to evaluate the potential of partial NH3 substitution for improving the safety of H2 use and to provide a database for the nonpremixed NH3-substituted H2–air flames. Considering coflow nonpremixed NH3–H2–air flames for a wide range of fuel and coflow air injection velocities (Vfuel and Vcoflow) and the extent of NH3 substitution, the effects of NH3 substitution on the stability limits and NOx emissions of the NH3–H2–air flames are experimentally determined, while the nonpremixed NH3–H2–air flame structure is computationally predicted using a detailed reaction mechanism. Results show significant reduction in the stability limits and unremarkable increase in the NOx emission index for enhanced NH3 substitution, supporting the potential of NH3 as an effective, carbon-free additive in nonpremixed H2–air flames. With increasing Vcoflow the NOx emission index decreases, while with increasing Vfuel it decreases and then increases due to the recirculation of burned gas and the reduced radiant heat losses, respectively. Given Vcoflow/Vfuel the flame length increases with enhanced NH3 substitution since more air is needed for reaction stoichiometry. The predicted flame structure shows that NH3 is consumed more upstream than H2 due to the difference between their diffusivities in air.  相似文献   

17.
The combustion of preheated lean homogeneous mixtures of hydrogen with methane in air in a catalytic packed-bed reactor was modeled at atmospheric pressure. The non-equilibrium, one-dimensional model developed employs multi-step surface and gas-phase reactions and accounts for the three modes of heat transfer within the bed as well as for heat loss from the bed. The catalyst considered was platinum. It was demonstrated that the model could predict the effects of changes in operational conditions such as inlet mixture temperature, fuel composition and mixture equivalence ratio on the methane and hydrogen conversions, as well as species concentrations and gas temperature profiles along the bed. It was shown that the hydrogen is consumed completely within the early part of the reactor length in all the cases considered for simulations. It was also shown that the improving effect of hydrogen on methane conversion is particularly evident at relatively low inlet temperatures and for very lean mixtures. However, this effect diminishes significantly with increasing inlet temperature and equivalence ratio. It was also shown that the positive effect of hydrogen addition which is more pronounced at its low concentrations in the fuel mixture, decreases somewhat with a further increase of the hydrogen content. The displayed trends were in good agreement with the corresponding experimentally observed.  相似文献   

18.
As the environment degrades at an alarming rate, there have been steady calls by most governments following international energy policies for the use of biofuels. One of the biofuels whose use is rapidly expanding is biodiesel. One of the economical sources for biodiesel production which doubles in the reduction of liquid waste and the subsequent burden of sewage treatment is used cooking oil (UCO). However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. This paper attempts to collect and analyze published works mainly in scientific journals about the engine performance, combustion and emissions characteristics of UCO biodiesel on diesel engine. Overall, the engine performance of the UCO biodiesel and its blends was only marginally poorer compared to diesel. From the standpoint of emissions, NOx emissions were slightly higher while un-burnt hydrocarbon (UBHC) emissions were lower for UCO biodiesel when compares to diesel fuel. There were no noticeable differences between UCO biodiesel and fresh oil biodiesel as their engine performances, combustion and emissions characteristics bear a close resemblance. This is probably more closely related to the oxygenated nature of biodiesel which is almost constant for every biodiesel (biodiesel has some level of oxygen bound to its chemical structure) and also to its higher viscosity and lower calorific value, which have a major bearing on spray formation and initial combustion.  相似文献   

19.
This paper investigates the generating efficiency and NOx emissions of a gas engine generator with a low-pressure loop exhaust gas recirculation system, fueled by a model biogas. Experiments for improving the generating efficiency and reducing NOx emissions were conducted, utilizing optimum spark timings based on the maximum generating efficiencies with varying exhaust gas recirculation (EGR) rates. The test results show that both the NOx emissions and the generating efficiency generally decrease when the EGR rate is increased. Also, by utilizing optimum spark timings with varying EGR rates, the addition of hydrogen to the biogas increases the generating efficiency of the engine. In particular, the generating efficiency of the biogas–hydrogen test increased by about 1.5% in comparison with the model biogas test for the optimum spark timing at 15% EGR. Accordingly, comprehensive techniques, such as the use of a biogas–hydrogen fuel mixture and optimum spark timings with respect to EGR rates, should be employed to efficiently generate electricity with a biogas engine.  相似文献   

20.
A theoretical modeling approach is presented, which describes the behavior of a typical fuel cell–heat engine hybrid system in steady-state operating condition based on an existing solid oxide fuel cell model, to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat-leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. Expressions for the power output and efficiency of the hybrid system are derived and the performance characteristics of the system are presented and discussed in detail. The effects of the design parameters and operating conditions on the system performance are studied numerically. It is found that there exist certain optimum criteria for some important parameters. The results obtained here may provide a theoretical basis for both the optimal design and operation of real fuel cell–heat engine hybrid systems. This new approach can be easily extended to other fuel cell hybrid systems to develop irreversible models suitable for the investigation and optimization of similar energy conversion settings and electrochemistry systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号