首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ternary PtRu-MoOx catalysts with various Mo compositions have been investigated as anode electrocatalytic materials for a polymer electrolyte fuel cell fed with H2/CO mixtures. Electrocatalysts have been prepared using a highly reproducible two step method, which allowed good control over the composition and particle size. All the prepared catalysts record a total metal loading close to 30 wt%, and a Mo load of 0, 1 and 3 wt%, supported on carbon Vulcan XC-72R, keeping the Pt/Ru atomic ratio constant. The incorporation of different amounts of Mo over the PtRu system does not modify structural characteristics such as particle size and crystal phases. However, the surface composition depends largely on the amount of Mo. An increase in the Mo loading to 3 wt% resulted in a decrease of the Pt surface area. The in situ FTIR technique has been used to investigate the CO oxidation process. The extent of CO poisoning was found to be lower for the trimetallic catalysts than for the binary catalyst at a potential below 0.25 V. The fuel cell performance was evaluated at 80 °C in a PEMFC fed with H2/CO (10 ppm). Polarization curves for the catalysts show that activity depends heavily on composition, with catalysts with a small amount of Mo (1 wt%) displaying the highest CO tolerance. An increase in Mo loading (3 wt%) decreases activity of the PtRuMo, although it also reduces CO poisoning. The presence of Mo5+ species must be crucial for reducing the saturation coverage of irreversibly adsorbed CO on Pt surface atoms at very low potentials. However, the surface metal ratio of Pt/Mo (wt%) must be higher than 4, in order to keep the enough surface bare platinum sites, which are required for the dissociative adsorption of molecular H2.  相似文献   

2.
The presence of CO in the H2-rich gas used as fuel for hydrogen fuel cells has a detrimental effect on PEMFC performance and durability at conventional operating conditions. This paper reports on an investigation of the effect of CO on H2 activation on a fuel cell Pt/C catalyst close to typical PEMFC operating conditions using H2-D2 exchange as a probe reaction and to measure hydrogen surface coverage. While normally limited by equilibrium in the absence of impurities on Pt at typical fuel cell operating temperatures, the presence of ppm concentrations of CO increased the apparent activation energy (Ea) of H2-D2 exchange reaction (representing H2 activation) from approximately 4.5-5.3 kcal mole−1 (Bernasek and Somorjai (1975) [24], Montano et al. (2006) [25]) (in the absence of CO) to 19.3-19.7 kcal mole−1 (in the presence of 10-70 ppm CO), similar to those reported by Montano et al. (2006) [25]. Calculations based on measurements indicate a CO surface coverage of approximately 0.55 ML at 80 °C in H2 with 70 ppm CO, which coincide very well with surface science results reported by Longwitz et al. (2004) [5]. In addition, surface coverages of hydrogen in the presence of CO suggest a limiting effect on hydrogen spillover by CO. Regeneration of Pt/C at 80 °C in H2 after CO exposure showed only a partial recovery of Pt sites. However, enough CO-free Pt sites existed to easily achieve equilibrium conversion for H2-D2 exchange. This paper establishes the baseline and methodology for a series of future studies where the additional effects of Nafion and humidity will be investigated.  相似文献   

3.
CO affects H2 activation on supported Pt in the catalyst layers of a PEMFC and significantly degrades overall fuel cell performance. This paper establishes a more fundamental understanding of the effect of humidity on CO poisoning of Pt/C at typical fuel cell conditions (80 °C, 2 atm). In this work, direct measurements of hydrogen surface concentration on Pt/C were performed utilizing an H2-D2 switch with Ar purge (HDSAP). The presence of water vapor decreased the rate of CO adsorption on Pt, but had very little effect on the resulting CO surface coverage on PtS (θCO) at steady-state. The steady-state θCOs at 80 °C for Pt exposed to H2 (PH2=1 atm) and a mixture of H2/H2O (1 atm H2, 10%RH) were 0.70 and 0.66 ML, respectively. Furthermore, total strongly bound surface hydrogen measured after exposure to H2/H2O was, surprisingly, the sum of the exchangeable surface hydrogen contributed by each component, even in the presence of CO. In the absence of any evidence for strong chemisorption of H2O on the carbon support with/without Pt, this additive nature and seemingly lack of interaction from the co-adsorption of H2 and H2O on Pt may be explained by the repulsion of strongly adsorbed H2O to the stepped-terrace interface at high coverages of surface hydrogen.  相似文献   

4.
The effect of H2O2 on the Pt dissolution in 0.5 mol dm−3 H2SO4 was investigated using an electrochemical quartz crystal microbalance (EQCM). For the potential cycling at 50 mV s−1, the Pt weight irreversibly decreases in a N2 atmosphere with H2O2, while only a negligible Pt weight-loss is observed in the N2 and O2 atmospheres without H2O2. The EQCM data measured by the potential step showed that the Pt dissolution in the presence of H2O2 depends on the electrode potential and the H2O2 concentration. For the stationary electrolysis, the Pt dissolution occurs at 0.61–1.06 and 1.06–1.36 V vs. RHE. It should be noted that the Pt dissolution phenomenon in the presence of H2O2 is also affected by the potential scanning time. Based on these results, H2O2 is considered not only to contribute to the formation of Pt-oxide causing the cathodic Pt dissolution, but also to participate in the anodic Pt dissolution and the chemical Pt dissolution.  相似文献   

5.
In this paper, TiO2 nanotubes/Pt/C (TNT/Pt/C) catalysts for ethanol electro-oxidation were prepared by co-mixing method in solution. TEM and XRD showed that uniform anatase TiO2 nanotubes were about 100 nm in length and 8 nm in diameter and the TGA results indicated that the amount of H2O contained in TiO2 nanotubes was much more than that in anatase TiO2. The composite catalysts activities were measured by cyclic voltammetry (CV), chronoamperometry and CO stripping voltammetry at 25 °C in acidic solutions. The results demonstrated that the TNT can greatly enhance the catalytic activity of Pt for ethanol oxidation and increase the utilization rate of platinum. The CO stripping test showed that the TNT can shift the CO oxidation potential to lower direction than TiO2 does, which is helpful for ethanol oxidation.  相似文献   

6.
The production of H2 for on-board application is a very interesting challenge for industrial and academic researchers. The aim is the application of on-board hydrogen production on the airplanes using kerosene as H2 source. In this work an in depth study into the partial dehydrogenation (PDH) of two hydrocarbons blends and desulfurized JetA1 fuel has been performed by using 1 wt.%Pt–1 wt.%Sn/γ-Al2O3 and 1 wt.%Pt–1 wt.%Sn–0.5%K/γ-Al2O3 to find a way to produce H2 “on-board” for the feeding of the fuel-cell apparatus. The mechanism of deactivation by coke was studied in depth combining Raman spectroscopy and Temperature-programmed oxidation (TPO) analyses. Microstructure analysis of metallic particles in fresh and deactivated catalysts was investigated by HRTEM. Relatively high H2 partial pressure increases catalyst life by controlling full dehydrogenation coke-forming reaction. By feeding model organic molecules, it was possible to identify the contribution of each class of compounds to the H2 production as well as the amount and type of coke formed. A relatively complex reaction pathway, which is able to evidence the role of different sites and reactions involved in PDH processes, was proposed.  相似文献   

7.
Thin film Pt/TiO2 catalysts are evaluated in a polymer electrolyte electrochemical cell. Individual thin films of Pt and TiO2, and bilayers of them, were deposited directly on Nafion membranes by thermal evaporation with varying deposition order and thickness (Pt loadings of 3–6 μg cm−2). Structural and chemical characterization was performed by transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Oxygen reduction reaction (ORR) polarization plots show that the presence of a thin TiO2 layer between the platinum and the Nafion increases the performance compared to a Pt film deposited directly on Nafion. Based on the TEM analysis, we attribute this improvement to a better dispersion of Pt on TiO2 compared to on Nafion and in addition, substantial proton conduction through the thin TiO2 layer. It is also shown that deposition order and the film thickness affects the performance.  相似文献   

8.
Cerium-promoted Pt/C catalysts were prepared by one-pot synthesis process and applied as an anode material for CO tolerance in PEM fuel cell. Its physical properties were characterized by XRD and TEM techniques, which indicated that Pt nano-particles are highly dispersed on the carbon supports. The investigation focused on examining the CO tolerance in sulfur acid solution of Pt–CeO2/C compared to Pt/C (JM). The hydrogen oxidation activity was strongly depended on the content of the cerium in the Pt catalyst which was detected by CV, LSV, CO-stripping and EIS techniques. Effect of the anode catalyst poisoning on hydrogen oxidation in the presence of CO was studied in single cells. Pt–CeO2/C catalyst at the appropriate content of 20% Ce presented a very higher CO tolerant activity. A tentative mechanism is proposed for a possible role of a bi-functional synergistic effect between Pt and CeO2 for the enhanced electro-oxidation of CO. CeO2-promoted Pt/C catalyst may be one of the attractive candidates as CO tolerance anode material in PEMFC.  相似文献   

9.
The influence of redox-treated Pt/TiO2 photocatalysts on H2 production is investigated. Catalyst characterizations are performed by TEM, XPS, XRD, BET, and UV–vis/DR spectroscopy techniques. In terms of production rate, the oxidation treatment shows higher reactivity than the reduction treatment. The reduction treatment allows the formation of metallic Pt(0), which more easily catalyzes the transition of TiO2 from the anatase to the rutile phases. Reduction-treated Pt/TiO2 photocatalysts have lower SBET values than oxidation-treated Pt/TiO2 photocatalysts due to the higher percentage of TiO2 in the rutile phase. Combining the results of XPS and optical analyses, PtO/TiO2 shows a higher energy band gap than metallic Pt(0)/TiO2, indicating that oxidation-treated Pt/TiO2 is more capable of achieving water splitting for H2 production. According to the results of this study, the oxidation treatment of Pt/TiO2 photocatalysts can significantly enhance the reactivity of photocatalytic H2 production because of their homogenous distribution, lower phase transition, higher SBET, and higher energy band gap.  相似文献   

10.
Pt–Cu catalysts supported on Al2O3 and Nb2O5 were studied for use in selective CO oxidation. The addition of copper enhanced the activity and selectivity of Pt–Cu/Nb2O5 at lower temperatures when compared to Pt/Nb2O5. On the other hand, copper addition was not beneficial in the case of Al2O3 supported catalysts.  相似文献   

11.
Pt nanoparticles supported on TiB2 conductive ceramics (Pt/TiB2) have been prepared through a liquid reduction method, where the TiB2 surfaces are stabilized with perfluorosulfonic acid. The prepared Pt/TiB2 catalyst is characterized with X-ray diffraction (XRD) and TEM techniques, and a rotating disk electrode (RDE) apparatus. The Pt nanoparticles are found to uniformly disperse on the surface of the TiB2 particles with narrow size distribution. The electrochemical stability of Pt/TiB2 is evaluated and found highly electrochemically stable compared to a commercial Pt/C catalyst. Meanwhile, the catalyst also shows comparable performance for oxygen reduction reaction (ORR) to the Pt/C. The mechanism of the remarkable stability and comparable activity for ORR on Pt/TiB2 is also proposed and discussed.  相似文献   

12.
Pt/C/MnO2 hybrid catalysts were prepared by a wet chemical method. Pt/C electrocatalysts were treated with manganese sulfate monohydrate (MnSO4·H2O) and sodium persulfate (Na2S2O8) to produce MnO2. The presence of MnO2 was confirmed by FTIR spectroscopy. Rotating ring–disk electrode (RRDE) experiments were performed on electrodes prepared using the hybrid electrocatalysts to estimate the amount of hydrogen peroxide (H2O2) formed during the oxygen reduction reaction (ORR) as a function of MnO2 content. Pt/C/MnO2 (5% by weight of MnO2) hybrid electrocatalysts produced 50% less hydrogen peroxide than the baseline Pt/C electrocatalyst. The hybrid electrocatalysts were used to prepare membrane electrode assemblies that were tested at 90 °C and 50% RH at open circuit with pure hydrogen as fuel and air as the oxidant. The fluoride ion concentration was measured using an ion selective electrode. The concentration of F in the anode condensate over 24 h was found to be reduced by a factor of 3–4 when Pt/C/MnO2 replaced Pt/C as the catalyst. Through cyclic voltammetry and RRDE kinetic studies, the lower ORR activity of the acid treated hybrid electrocatalysts was attributed to catalyst treatment with acid during MnO2 introduction. The activity of the hybrid catalyst was improved by switching to a water-based synthesis.  相似文献   

13.
In this work a series of carbons with different structural and textural properties were characterised and evaluated for their application in hydrogen storage. The materials used were different types of commercial carbons: carbon fibers, carbon cloths, nanotubes, superactivated carbons, and synthetic carbons (carbon nanospheres and carbon xerogels). Their textural properties (i.e., surface area, pore size distribution, etc.) were related to their hydrogen adsorption capacities. These H2 storage capacities were evaluated by various methods (i.e., volumetric and gravimetric) at different temperatures and pressures. The differences between both methods at various operating conditions were evaluated and related to the textural properties of the carbon-based adsorbents. The results showed that temperature has a greater influence on the storage capacity of carbons than pressure. Furthermore, hydrogen storage capacity seems to be proportional to surface area, especially at 77 K. The micropore size distribution and the presence of narrow micropores also notably influence the H2 storage capacity of carbons. In contrast, morphological or structural characteristics have no influence on gravimetric storage capacity. If synthetic materials are used, the textural properties of carbon materials can be tailored for hydrogen storage. However, a larger pore volume would be needed in order to increase storage capacity. It seems very difficult approach to attain the DOE and EU targets only by physical adsorption on carbon materials. Chemical modification of carbons would seem to be a promising alternative approach in order to increase the capacities.  相似文献   

14.
This paper explores the effect and siting (location) of Nafion on Pt/C as exists in a PEM fuel cell catalyst layer. The addition of 30 wt% Nafion on Pt/C (Nfn-Pt/C) resulted in a severe loss of BET surface area by filling/blocking the smaller pore structures in the carbon support. Surprisingly, the presence of this much Nafion appeared to have only a minimal effect on the adsorption capability of either hydrogen or CO on Pt. However, the presence of Nafion doubled the amount of time required to purge most of the gas-phase and weakly-adsorbed hydrogen molecules away from the catalyst during hydrogen surface concentration measurements. This strongly chemisorbed surface hydrogen was determined by a H2/D2 switch and exchange procedure. Nafion had an even more pronounced effect on the reaction of a larger molecule like cyclopropane. Results from the modeling of cyclopropane hydrogenolysis in an idealized pores suggest that partial blockage of only the pore openings by the Nafion for the meso-macropores is sufficient to induce diffusion limitations on the reaction. The facts suggest that most of the Pt particles are in the meso-macropores of the C support, whereas Nafion is present primarily on the external surface of the C where it blocks significantly the micropores but only partially the meso-macropores.  相似文献   

15.
The Pt/graphene catalysts were prepared by using strong electrostatic adsorption (SEA) technique for polymer electrolyte membrane fuel cell (PEMFC). The pH shift was considered and the point of zero charge (PZC) of graphene was acquired at pH about 5.2. Due to the mid-to-low PZC, the cationic precursor (i.e., platinum tetra-ammine ([NH3)4 Pt]2+ or PTA) was chosen. After graphene surface was treated to be anionic substrate, the PTA was added and adsorbed onto the graphene by electrostatic force. Pt metals between before and after adsorption were determined by inductively coupled plasma spectroscopy (ICP) in order to consider Pt percent weight. After reduction in hydrogen environment, Pt/graphene catalysts were made. The second adsorption including the reduction was repeated in order to obtain the high Pt percentage such as 21.5%wt. The average particle sizes (ca. 2.2 nm) and distribution of Pt were inspected using transmission electron microscopy (TEM), where the crystalline structures were verified by X-Ray diffraction (XRD). Electrochemical properties were tested using cyclic voltammetry (CV) and the accelerated durability test (ADT) was also carried out. The oxygen reduction reaction (ORR) was also carried out, where the specific activity and mass activity were examined. It was observed from ADT that mass activity lost about 33%. Furthermore, the ORR was performed to verify the first order reaction, as well as to determine the mechanism path way for four electron transfer. Moreover, the kinetic constant of the ORR was also estimated.  相似文献   

16.
PtSnO2/C with Pt:SnO2 molar ratios of 9:1, 3:1 and 1:1 prepared by an alcohol-reduction process were evaluated as anodicelectrocatalysts for direct ethanol fuel cell (DEFC). Acetaldehyde, acetic acid and mixtures of them with ethanol were also tested as fuels. Single cell tests showed that PtSnO2/C electrocatalysts have a superior electrical performance for ethanol and acetaldehyde electro-oxidation when compared to commercial Pt3Sn/C(alloy) and Pt/C electrocatalysts. For all electrocatalysts, no electrical response was observed when acetic acid was used as a fuel. For ethanol electro-oxidation, the main product was acetaldehyde when Pt3Sn/C(alloy) and Pt/C electrocatalysts were employed. Besides, PtSnO2/C electrocatalysts led to the formation of acetic acid as the major product. CO2 was formed in small quantities for all electrocatalysts studied. A sharp drop in electrical performance was observed when using a mixture of ethanol and acetaldehyde as a fuel, however, the use of a mixture of ethanol and acetic acid as a fuel did not affect the DEFC performance.  相似文献   

17.
Laminar flame speeds of lean premixed H2/CO/air mixtures were measured in the counterflow configuration over a wide range of H2 content at lean conditions. The values were determined by extrapolating the referenced flame speed to zero stretch rate using the non-linear extrapolation method to reduce the systematic error. Detailed calculation of laminar flame speed was also conducted using PREMIX code coupled with three different kinetic models. In general, simulation results agreed well with the experimental data. Both the experimental and calculation results revealed that the laminar flame speeds of lean premixed H2/CO/air mixtures increased with H2 content significantly when H2 content was small (?15%) and gradually when H2 content was large (>15%).  相似文献   

18.
Carbon supported bimetallic Pt-alloys (Pt0.75M0.25/C, with M = Ni or Co) are investigated as novel electrode materials for H2O2 reduction in acid solution. The alloy electrocatalysts, Pt0.75Ni0.25/C and Pt0.75Co0.25/C, as well as carbon supported Pt (Pt/C) are characterised using cyclic voltammetry. The electrocatalytic activity of the materials is studied using a rotating disc electrode system with a combination of linear scan voltammetry and chronoamperometry. It is found that the activity of Pt0.75M0.25/C electrocatalysts for H2O2 reduction is comparable to the activity of Pt/C electrocatalyst, with Pt0.75Co0.25/C exhibiting the best performance.  相似文献   

19.
The CO and CO2 poisoning effects on the degradation of cell performance of proton exchange membrane fuel cell (PEMFC) under transient stage were investigated. The mechanism of CO poisoning lies in the preferential adsorbing of CO to the platinum surface and the blocking of active sites of hydrogen. These phenomena were described with adsorption, desorption, and electro-oxidation processes of CO and hydrogen in the present work. In addition, it is well known that the reverse water gas shift reaction (RWGS) is the main effect of the CO2 poisoning, through which a large part of the catalytic surface area becomes inactive due to the hydrogen dissociation. The predicted results showed that, by contaminating the fuel with 10 ppm CO at the condition of PH = 0.8 atm and PCO2=0.2 atmPCO2=0.2atm, the current density of the PEM fuel cell was lowered 28% with rate constant of RWGS krs from zero to 0.02. With 50 ppm CO, the performance drop was only 18%. For the reformed gas, CO2 poisoning became much more significantly when the CO content in the reactant gas was small.  相似文献   

20.
During PEM fuel cell operation, formation of H2O2 and material corrosion occurs, generating trace amounts of metal cations (i.e., Fe2+, Pt2+) and subsequently initiating the deterioration of cell components and, in particular, PFSA membranes (e.g., Nafion). However, most previous studies of this have been performed using conditions not relevant to fuel cell environments, and very few investigations have studied the effect of Nafion decomposition on conductivity, one of the most crucial factors governing PEMFC performance. In this study, a quantitative examination of properties and conductivities of degraded Nafion membranes at conditions relevant to fuel cell environments (30-100%RH and 80 °C) was performed. Nafion membranes were pre-ion-exchanged with small amounts of Fe2+ ions prior to H2O2 exposure. The degradation degree (defined as loss of ion-exchange capacity, weight, and fluoride content), water uptake, and conductivity of H2O2-exposed membranes were found to strongly depend on Fe content and H2O2 treatment time. SEM cross-sections showed that the degradation initially took place in the center of the membrane, while FTIR analysis revealed that Nafion degradation preferentially proceeds at the sulfonic end group and at the ether linkage located in the pendant side chain and that the H-bond of water is weakened after prolonged H2O2 exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号