首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a two-phase two-dimensional PEM fuel cell model, which is capable of handling liquid water transport across different porous materials, is employed for parametric studies of liquid water transport and distribution in the cathode of a PEM fuel cell. Attention is paid particularly to the coupled effects of two-phase flow and heat transfer phenomena. The effects of key operation parameters, including the outside cell boundary temperature, the cathode gas humidification condition, and the cell operation current, on the liquid water behaviors and cell performance have been examined in detail. Numerical results elucidate that increasing the fuel cell temperature would not only enhance liquid water evaporation and thus decrease the liquid saturation inside the PEM fuel cell cathode, but also change the location where liquid water is condensed or evaporated. At a cell boundary temperature of 80 °C, liquid water inside the catalyst layer and gas diffusion media under the current-collecting land would flow laterally towards the gas channel and become evaporated along an interface separating the land and channel. As the cell boundary temperature increases, the maximum current density inside the membrane would shift laterally towards the current-collecting land, a phenomenon dictated by membrane hydration. Increasing the gas humidification condition in the cathode gas channel and/or increasing the operating current of the fuel cell could offset the temperature effect on liquid water transport and distribution.  相似文献   

2.
A pore network modeling approach is developed to study multiphase transport phenomena inside a porous structure representative of the Cathode Catalyst Layer (CCL) of Proton Exchange Membrane Fuel Cell. A full coupling between two-phase transport, charge transport and heat transport is considered. The liquid water evaporation is also taken into account. The current density profile and the liquid water distribution and production are investigated to understand the liquid production mechanism inside the CCL. The results suggest that the wettability and the pore size distribution have an important impact on the water management inside the cathode catalyst layer and thus on the performances of the proton exchange membrane fuel cell. Simulations show also that Bruggemann correlation used in classical models does not predict correctly gas diffusion.  相似文献   

3.
Non‐uniform current distribution in polymer electrolyte membrane (PEM) fuel cells results in local over‐heating, accelerated ageing, and lower power output than expected. This issue is quite critical when a fuel cell experiences water flooding. In this study, the performance of a PEM fuel cell is investigated under cathode flooding conditions. A two‐dimensional approach is proposed for a single PEM fuel cell based on conservation laws and electrochemical equations to provide useful insight into water transport mechanisms and their effect on the cell performance. The model results show that inlet stoichiometry and humidification, and cell operating pressure are important factors affecting cell performance and two‐phase transport characteristics. Numerical simulations have revealed that the liquid saturation in the cathode gas distribution layer (GDL) could be as high as 20%. The presence of liquid water in the GDL decreases oxygen transport and surface coverage of active catalyst, which in turn degrades the cell performance. The thermodynamic quality in the cathode flow channel is found to be greater than 99.7%, indicating that liquid water in the cathode gas channel exists in very small amounts and does not interfere with the gas phase transport. A detailed analysis of the operating conditions shows that cell performance should be optimized based on the maximum average current density achieved and the magnitude of its dispersion from its mean value. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Water management is vital for the successful development of PEM fuel cells. Water should be carefully balanced within a PEM fuel cell to meet the conflicting requirements of membrane hydration and cathode anti-flooding. In order to understand the key factors that can improve water management and fuel cell performance, the cathodes with different structures and properties are prepared and tested in this study. The experimental results show that even though no micro-porous layer (MPL) is placed between the cathode catalyst layer (CCL) and macro-porous substrate (MaPS), a hydrophobic CCL is effective to prevent cathode flooding and keep membrane hydrated. The impedance study and the analysis of the polarization curves indicate that the optimized hydrophobic micro-porous structure in the MPL or the hydrophobic CCL could be mainly responsible for the improved water management in PEM fuel cells, which functions as a watershed to provide wicking of liquid water to the MaPS and increase the membrane hydration by enhancing the back-diffusion of water from the cathode side to the anode side through the membrane.  相似文献   

5.
Water transport is of paramount importance to the cold start of proton exchange membrane fuel cells (PEMFCs). Analysis of water transport in cathode catalyst layer (CCL) during cold start reveals the distinct characteristics from the normal temperature operation. This work studies the effect of CCL mesoscopic pore-morphology on PEMFC cold start. The CCL mesoscale morphology is characterized by two tortuosity factors of the ionomer network and pore structure, respectively. The simulation results demonstrate that the mesoscale morphology of CCL has a significant influence on the performance of PEMFC cold start. It was found that cold-starting of a cell with a CCL of less tortuous mesoscale morphology can succeed, whereas starting up a cell with a CCL of more tortuous mesoscale morphology may fail. The CCL of less tortuous pore structure reduces the water back diffusion resistance from the CCL to proton exchange membrane (PEM), thus enhancing the water storage in PEM, while reducing the tortuosity in ionomer network of CCL is found to enhance the water transport in and the water removal from CCL. For the sake of better cold start performance, novel preparation methods, which can create catalyst layers of larger size primary pores and less tortuous pore structure and ionomer network, are desirable.  相似文献   

6.
Liquid water transport is one of the key challenges for water management in a proton exchange membrane (PEM) fuel cell. Investigation of the air–water flow patterns inside fuel cell gas flow channels with gas diffusion layer (GDL) would provide valuable information that could be used in fuel cell design and optimization. This paper presents numerical investigations of air–water flow across an innovative GDL with catalyst layer and serpentine channel on PEM fuel cell cathode by use of a commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different static contact angles (hydrophilic or hydrophobic) were applied to the electrode (GDL and catalyst layer). The results showed that different wettabilities of cathode electrode could affect liquid water flow patterns significantly, thus influencing on the performance of PEM fuel cells. The detailed flow patterns of liquid water were shown, several gas flow problems were observed, and some useful suggestions were given through investigating the flow patterns.  相似文献   

7.
Proper water management in polymer electrolyte membrane (PEM) fuel cells is critical to achieve the potential of PEM fuel cells. Membrane electrolyte requires full hydration in order to function as proton conductor, often achieved by fully humidifying the anode and cathode reactant gas streams. On the other hand, water is also produced in the cell due to electrochemical reaction. The combined effect is that liquid water forms in the cell structure and water flooding deteriorates the cell performance significantly. In the present study, a design procedure has been developed for flow channels on bipolar plates that can effectively remove water from the PEM fuel cells. The main design philosophy is based on the determination of an appropriate pressure drop along the flow channel so that all the liquid water in the cell is evaporated and removed from, or carried out of, the cell by the gas stream in the flow channel. At the same time, the gas stream in the flow channel is maintained fully saturated in order to prevent membrane electrolyte dehydration. Sample flow channels have been designed, manufactured and tested for five different cell sizes of 50, 100, 200, 300 and 441 cm2. Similar cell performance has been measured for these five significantly different cell sizes, indicating that scaling of the PEM fuel cells is possible if liquid water flooding or membrane dehydration can be avoided during the cell operation. It is observed that no liquid water flows out of the cell at the anode and cathode channel exits for the present designed cells during the performance tests, and virtually no liquid water content in the cell structure has been measured by the neutron imaging technique. These measurements indicate that the present design procedure can provide flow channels that can effectively remove water in the PEM fuel cell structure.  相似文献   

8.
水对质子交换膜(PEM)燃料电池的性能有极其重要的影响,良好的水管理是PEM燃料电池保持高性能的必要条件.通过试验,观察了在重力作用下液态水对PEM燃料电池性能及其内部传质的影响,分析了PEM燃料电池单体电极的不同摆放位置对其性能的影响.试验结果发现:在电流密度较小时,重力对PEM燃料电池性能的影响不明显,电流密度较大时,重力对PEM燃料电池性能的影响比较明显.试验结果对优化PEM燃料电池的结构和水管理有一定的参考价值.  相似文献   

9.
The solid matrix of the porous cathode catalyst layer (CCL) of a polymer electrolyte fuel cell is made of two different materials (carbon with supported Pt and ionomer), which are characterized by different wettability (i.e. contact angles). This paper discusses the need for considering the combined consideration of the mixed wettability and the distributed pore structure of CCL in modelling the transport of liquid water and oxygen gas. A simple 1-D model that considers two different pore size distributions, derived from experimental capillary pressure–saturation literature data, for the hydrophobic and hydrophilic pores is presented. The results indicate that for water to be transported in liquid-state through the CCL, the liquid saturation is such that only very small hydrophobic pores remain available for gas transport such that Knudsen diffusion will dominate and must be considered in CCL models.  相似文献   

10.
A two-dimensional (2D), single- and two-phase, hybrid multi-component transport model is developed for the cathode of PEM fuel cell using interdigitated gas distributor. The continuity equation and Darcy's law are used to describe the flow of the reactant gas and production water. The production water is treated as vapor when the current density is small, and as two-phase while the current density is greater than the critical current density. The advection–diffusion equations are utilized to study species transport of multi-component mixture gas. The Butler–Volmer equation is prescribed for the domain in the catalyst layer. The predicted results of the hybrid model agree well with the available experimental data. The model is used to investigate the effects of operating conditions and the cathode structure parameters on the performance of the PEM fuel cell. It is observed that liquid water appears originally in the cathodic catalyst layer over outlet channel under intermediate current and tends to be distributed uniformly by the capillary force with the increase of the current. It is found that reduction of the width of outlet channel can enhance the performance of PEM fuel cell via the increase of the current density over this region, which has, seemingly, not been discussed in previous literatures.  相似文献   

11.
《Applied Energy》2009,86(2):181-193
This paper presents a comprehensive, consistent and systematic mathematical model for PEM fuel cells that can be used as the general formulation for the simulation and analysis of PEM fuel cells. As an illustration, the model is applied to an isothermal, steady state, two-dimensional PEM fuel cell. Water is assumed to be in either the gas phase or as a liquid phase in the pores of the polymer electrolyte. The model includes the transport of gas in the gas flow channels, electrode backing and catalyst layers; the transport of water and hydronium in the polymer electrolyte of the catalyst and polymer electrolyte layers; and the transport of electrical current in the solid phase. Water and ion transport in the polymer electrolyte was modeled using the generalized Stefan–Maxwell equations, based on non-equilibrium thermodynamics. Model simulations show that the bulk, convective gas velocity facilitates hydrogen transport from the gas flow channels to the anode catalyst layers, but inhibits oxygen transport. While some of the water required by the anode is supplied by the water produced in the cathode, the majority of water must be supplied by the anode gas phase, making operation with fully humidified reactants necessary. The length of the gas flow channel has a significant effect on the current production of the PEM fuel cell, with a longer channel length having a lower performance relative to a shorter channel length. This lower performance is caused by a greater variation in water content within the longer channel length.  相似文献   

12.
The dynamic behaviors of a proton exchange membrane (PEM) fuel cell have been studied both experimentally and numerically. The objective of this paper is to investigate the effects of cathode inlet humidification on PEM fuel cell load change operations and the fuel cell performance during a simulated start‐up process. The PEM fuel cell was found to respond quickly and reproducibly to load changes. It was also found that an increase in the cathode inlet humidification significantly influences the start‐up performance of a PEM fuel cell. The cathode inlet relative humidity (RH) under 30% significantly dropped the cell dynamic performance. Extensive numerical simulations, with the transient processes of load jump and gradual changes considered, were performed to characterize dynamic responses of a singe‐channel PEM fuel cell under different inlet humidification levels. The results showed that the response time for a fuel cell to reach steady state depends on water accumulation in the membrane, which is consistent with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Effects of active area size on steady-state characteristics of a working PEM fuel cell, including local current densities, local oxygen transport rates, and liquid water transport were studied by applying a three-dimensional, two-phase PEM fuel cell model. The PEM fuel cells were with parallel, interdigitated, and serpentine flow channel design. At high operating voltages, the size effects on cell performance are not noticeable owing to the occurrence of oxygen supply limit. The electrochemical reaction rates are high at low operating voltages, producing large quantity of water, whose removal capability is significantly affected by flow channel design. The cells with long parallel flow field experience easy water accumulation, thereby presenting low oxygen transport rate and low current density. The cells with interdigitated and serpentine flow fields generate forced convection stream to improve reactant transport and liquid water removal, thereby leading to enhanced cell performance and different size effect from the parallel flow cells. Increase in active area significantly improves performance for serpentine cells, but only has limited effect on that of interdigitated cells. Size effects of pressure drop over the PEM cells were also discussed.  相似文献   

14.
Liquid water transport is one of the key challenges regarding the water management in a proton exchange membrane (PEM) fuel cell. Conventional gas diffusion layers (GDLs) do not allow a well-organized liquid water flow from catalyst layer to gas flow channels. In this paper, three innovative GDLs with different micro-flow channels were proposed to solve liquid water flooding problems that conventional GDLs have. This paper also presents numerical investigations of air–water flow across the proposed innovative GDLs together with a serpentine gas flow channel on PEM fuel cell cathode by use of a commercial computational fluid dynamics (CFD) software package FLUENT. The results showed that different designs of GDLs will affect the liquid water flow patterns significantly, thus influencing the performance of PEM fuel cells. The detailed flow patterns of liquid water were shown. Several gas flow problems for the proposed different kinds of innovative GDLs were observed, and some useful suggestions were given through investigating the flow patterns inside the proposed GDLs.  相似文献   

15.
It is known that the static contact angle reflecting the “contact area” between liquid and solid is insufficient to represent the dynamic wettability of a solid surface, and another parameter called the sliding angle is needed to describe the relative easiness of liquid moving on a solid surface. However, sliding angle has been largely neglected in the previous studies for proton exchange membrane fuel cell (PEMFC). In this study, three-dimensional multiphase simulations are carried out for a PEMFC with single straight flow channels considering both the static contact angles and sliding angles of gas diffusion layer (GDL) and catalyst layer (CL). The results show that the liquid water volume fraction in cathode CL (CCL) and GDL (CGDL) can be increased by several times when the sliding angle is increased while the static contact angle is kept constant. This could have significant implication on the water management strategy due to the considerable changes in the water transport and removal processes. Since GDL is much thicker than CL, changing the surface dynamic wettability of GDL has more significant effect on liquid water transport than changing the surface dynamic wettability of CL.  相似文献   

16.
Water content in the membrane and the presence of liquid water in the catalyst layers (CL) and the gas diffusion layers (GDL) play a very important role in the performance of a PEM fuel cell. To study water transport in a PEM fuel cell, a two‐phase flow mathematical model is developed. This model couples the continuity equation, momentum conservative equation, species conservative equation, and water transport equation in the membrane. The modeling results of fuel cell performances agree well with measured experimental results. Then this model is used to simulate water transport and current density distribution in the cathode of a PEM fuel cell. The effects of operating pressure, cell temperature, and humidification temperatures on the net water transfer through the membrane, liquid water saturation, and current density distribution are studied. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(2): 89–100, 2006; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/htj.20107  相似文献   

17.
We present a pore-scale simulation of the capillary condensation of water in the cathode catalyst layer (CCL) of proton exchange membrane fuel cells by the lattice Boltzmann method. Based on the reconstructed CCL, the capillary condensation process in CCL is simulated under different humidity conditions, and the effects of porosity and especially wettability on the liquid water distribution in CCL are studied. The influence of liquid water on the void pore size distribution and pore connectivity in CCL is evaluated, and the results show that the hydrophilic CCL is more prone to be flooded. Subsequently, the effective transport coefficients of oxygen and proton in partially saturated CCL are investigated. The results reveal that the hydrophobic CCL is beneficial for reducing the gas transport tortuosity but simultaneously causes a higher Knudsen diffusion resistance. By comprehensively considering the changes in tortuosity and Knudsen resistance caused by liquid water, a more practical correlation of effective diffusivity for the partially saturated CCL is proposed. Moreover, this work proves the vital role of liquid water in the proton conduction in CCL. The simulated effective proton conductivity in CCL is more agree with the measurements if the contribution of liquid water to proton transport is considered.  相似文献   

18.
A multi-dimensional two-phase PEM fuel cell model, which is capable of handling the liquid water transport across different porous materials, including the catalyst layer (CL), the micro-porous layer (MPL), and the macro-porous gas diffusion medium (GDM), has been developed and applied in this paper for studying the liquid water transport phenomena with consideration of the MPL. Numerical simulations show that the liquid water saturation would maintain the highest value inside the catalyst layer while it possesses the lowest value inside the MPL, a trend consistent qualitatively with the high-resolution neutron imaging data. The present multi-dimensional model can clearly distinguish the different effects of the current-collecting land and the gas channel on the liquid water transport and distribution inside a PEM fuel cell, a feature lacking in the existing one-dimensional models. Numerical results indicate that the MPL would serve as a barrier for the liquid water transport on the cathode side of a PEM fuel cell.  相似文献   

19.
The cathode flow-field design of a polymer electrolyte membrane (PEM) fuel cell is crucial to its performance, because it determines the distribution of reactants and the removal of liquid water from the fuel cell. In this study, the cathode flow-field of a parallel flow-field PEM fuel cell was optimized using a sub-channel. The main-channel was fed with moist air, whereas the sub-channel was fed with dry air. The influences of the sub-channel flow rate (SFR, the amount of air from the sub-channel inlet as a percentage of the total cathode flow rate) and the inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) on fuel cell performance were numerically evaluated using a three-dimensional, two-phase fuel cell model. The results indicated that the SFR and SIP had significant impacts on the distribution of the feed air, removal of liquid water, and fuel cell performance. It was found that when the SIP was located at about 30% along the length of the channel from main-channel inlet and the SFR was about 70%, the PEM fuel cell exhibited much better performance than seen with a conventional design.  相似文献   

20.
Portable fuel cells are receiving great attention today mainly because their energy density is higher than any portable battery solution. Among other types, portable polymer electrolyte membrane (PEM) fuel cells are an established technology where research on increasing their efficiency is leading product development and manufacturing. The objective of this work was to study and evaluate the redesign of a commercial portable fuel cell, improving its efficiency. A three-dimensional model of the original PEM fuel cell with parallel plus a transversal flow channel design was developed using Comsol Multiphysics, including the effects of liquid water formation and electric current production. Using this model, the effects of different channel geometries and respective cathode flow rates on the cell’s performance, including the local transport characteristics, were studied. Laboratory tests with various fuel cell stacks using the new channels structure were effectuated for an evaluation of the fuel cell’s performance, showing improvements in its efficiency of up to 26.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号