共查询到20条相似文献,搜索用时 15 毫秒
1.
A promising candidate that may follow conventional vehicles with internal combustion engines combines hydrogen from regenerative sources of energy, fuel cells and an electric drive train. For early fleets introduced the refuelling infrastructure needs to be in place at least to the extent of the vehicles operational reach. The question arises which strategies may help to keep initial hydrogen and infrastructure cost low? Industrial production, distribution and use of hydrogen is well-established and the volumes handled are substantial. Even though today's industrial hydrogen is not in tune with the long-term sustainable vision, hydrogen production and infrastructure already in place might serve as a nucleus for putting that vision into practice. This contribution takes stock of industrial production and use of hydrogen in North Rhine-Westphalia based on a recently finalized project. It demonstrates to which extent industrial hydrogen could be used for a growing number of vehicles and at which time additional capacity might need to be installed. 相似文献
2.
Eva Rosenberg Audun Fidje Kari Aamodt Espegren Christoph Stiller Ann Mari Svensson Steffen Møller-Holst 《International Journal of Hydrogen Energy》2010
The Norwegian energy system is characterized by high dependency on electricity, mainly hydro power. If the national targets to reduce emissions of greenhouse gases should be met, a substantial reduction of CO2 emissions has to be obtained from the transport sector. This paper presents the results of the analyses of three Norwegian regions with the energy system model MARKAL during the period 2005–2050. The MARKAL models were used in connection with an infrastructure model H2INVEST. The analyses show that a transition to a hydrogen fuelled transportation sector could be feasible in the long run, and indicate that with substantial hydrogen distribution efforts, fuel cell cars can become competitive compared to other technologies both in urban (2025) and rural areas (2030). In addition, the result shows the importance of the availability of local energy resources for hydrogen production, like the advantages of location close to chemical industry or surplus of renewable electricity. 相似文献
3.
The current climate crisis and recent world events, including the global economic crisis and growing concerns over the availability and cost of petroleum fuels, has sparked a global interest in developing alternative, sustainable, clean fuel technologies for the transportation sector. While a multitude of alternative fuel and vehicle technologies have been presented, hydrogen is considered by many as an option of choice. However, the mass-adoption of hydrogen presents many challenges, including appropriate refueling infrastructure supply transitions, consumer vehicle purchase behavior, and fuel costs. Early fleet adoption is one proposed strategy to transition hydrogen use in the transportation sector. Bus-transit demonstration projects have proven the technology, yet there has not been large-scale adoption by transit fleets. This paper addresses infrastructure, vehicle, and personnel needs to support the transition of a medium sized transit agency to full conversion to hydrogen fuel, using Knoxville Area Transit (KAT) as a case study. Specifically, requirements for hydrogen bus fleets, production, storage, refueling and maintenance facilities, and personnel are addressed as well as the transition strategy for implementing the technology. 相似文献
4.
This paper critically reviews the growing literature optimising hydrogen infrastructure. We examine studies across spatial scales: national scale studies using energy system models; regional scale studies optimising spatially disaggregated hydrogen infrastructure; and local scale studies optimising the siting of filling stations. For the latter two types of study, we critically assess the assumptions made around hydrogen demand, a key exogenous input into these studies. We identify knowledge gaps and issues that have not been sufficiently addressed in the literature, and we suggest areas for further work. 相似文献
5.
Dmitri Bessarabov Gerhardus Human Andries J. Kruger Steven Chiuta Phillimon M. Modisha Stephanus P. du Preez Stephanus P. Oelofse Immanuel Vincent Jan Van Der Merwe Henrietta W. Langmi Jianwei Ren Nicholas M. Musyoka 《International Journal of Hydrogen Energy》2017,42(19):13568-13588
The paper provides brief introduction to the National South African Program, branded HySA (Hydrogen South Africa) as well as discusses potential business cases for deployment of hydrogen and fuel cell technology in South Africa. This paper also describes some key activities in the area of hydrogen production and storage within HySA Infrastructure Center of Competence in South Africa. The content of this paper is based on the presentation given during the recent WHEC 2016 Congress in Zaragoza, Spain. More specifically, the discussion of activities at HySA Infrastructure Center of Competence in the paper includes hydrogen production and storage. 相似文献
6.
Shane D. Stephens-Romero Tim M. Brown Jee E. Kang Wilfred W. Recker G. Scott Samuelsen 《International Journal of Hydrogen Energy》2010
The introduction of hydrogen infrastructure and fuel cell vehicles (FCVs) to gradually replace gasoline internal combustion engine vehicles can provide environment and energy security benefits. The deployment of hydrogen fueling infrastructure to support the demonstration and commercialization of FCVs remains a critical barrier to transitioning to hydrogen as a transportation fuel. This study utilizes an engineering methodology referred to as the Spatially and Temporally Resolved Energy and Environment Tool (STREET) to demonstrate how systematic planning can optimize early investments in hydrogen infrastructure in a way that supports and encourages growth in the deployment of FCVs while ensuring that the associated environment and energy security benefits are fully realized. Specifically, a case study is performed for the City of Irvine, California – a target area for FCV deployment – to determine the optimized number and location of hydrogen fueling stations required to provide a bridge to FCV commercialization, the preferred rollout strategy for those stations, and the environmental impact associated with three near-term scenarios for hydrogen production and distribution associated with local and regional sources of hydrogen available to the City. Furthermore, because the State of California has adopted legislation imposing environmental standards for hydrogen production, results of the environmental impact assessment for hydrogen production and distribution scenarios are measured against the California standards. The results show that significantly fewer hydrogen fueling stations are required to provide comparable service to the existing gasoline infrastructure, and that key community statistics are needed to inform the preferred rollout strategy for the stations. Well-to-wheel (WTW) greenhouse gas (GHG) emissions, urban criteria pollutants, energy use, and water use associated with hydrogen and FCVs can be significantly reduced in comparison to the average parc of gasoline vehicles regardless of whether hydrogen is produced and distributed with an emphasis on conventional resources (e.g., natural gas), or on local, renewable resources. An emphasis on local renewable resources to produce hydrogen further reduces emissions, energy use, and water use associated with hydrogen and FCVs compared to an emphasis on conventional resources. All three hydrogen production and distribution scenarios considered in the study meet California's standards for well-to-wheel GHG emissions, and well-to-tank emissions of urban ROG and NOX. Two of the three scenarios also meet California's standard that 33% of hydrogen must be produced from renewable feedstocks. Overall, systematic planning optimizes both the economic and environmental impact associated with the deployment of hydrogen infrastructure and FCVs. 相似文献
7.
Kenshi Itaoka Aya Saito Kazunari Sasaki 《International Journal of Hydrogen Energy》2017,42(11):7290-7296
A public survey was conducted in March 2015 in Japan asking public awareness, knowledge, perception and acceptance regarding hydrogen, hydrogen infrastructure and fuel cell vehicle. Changes in answers were found by comparing results of current survey to those of the two previous surveys that were conducted six and seven years ago. We found a large increase in the awareness and relatively a small improvement on knowledge on hydrogen energy, hydrogen infrastructure and fuel cell vehicle from the previous surveys. In contrast we did not find much changes in perception of risk and benefit on hydrogen society and hydrogen station and public acceptance of hydrogen infrastructure. Through the regression analyses we found the small influence of time background as well as the influence of risk and benefit perception of hydrogen infrastructure on the acceptance. In conclusion, we find people have become a little more positive about hydrogen infrastructure in the baseline but more cautious about the risk and benefits. This can be interpreted as a change in the quality of perception and acceptance, that is, the favorable prejudice to hydrogen energy and fuel cell technologies has changed towards a slightly more rational support. 相似文献
8.
Sylvestre Baufumé Fabian Grüger Thomas Grube Dennis Krieg Jochen Linssen Michael Weber Jürgen-Friedrich Hake Detlef Stolten 《International Journal of Hydrogen Energy》2013
This study assumes a high penetration of hydrogen-fuelled vehicles for Germany in 2050 and investigates the structure of a potential pipeline network for hydrogen transmission and distribution under different scenarios for H2 production and demand. All data are georeferenced for their computation and displayed within a Geographical Information System (GIS) environment. 相似文献
9.
Neil Strachan Nazmiye Balta-Ozkan David Joffe Kate McGeevor Nick Hughes 《International Journal of Hydrogen Energy》2009
This paper describes an innovative modelling approach focusing on linking spatial (GIS) modelling of hydrogen (H2) supply, demands and infrastructures, anchored within a economy-wide energy systems model (MARKAL). The UK government is legislating a groundbreaking climate change mitigation target for a 60% CO2 reduction by 2050, and has identified H2 infrastructures and technologies as potentially playing a major role, notably in the transport sector. An exploratory set of linked GIS–MARKAL model scenarios generate a range of nuanced insights including spatial matching of supply and demand for optimal zero-carbon H2 deployment, a crucial finding on successive clustering of demand centres to enable economies of scale in H2 supply and distribution, the competitiveness of imported liquid H2 and of liquid H2 distribution, and sectoral competition for coal with carbon sequestration between electricity and H2 production under economy-wide CO2 constraints. 相似文献
10.
To reduce criteria pollutant emissions and greenhouse gases from mobile sources, the use of hydrogen as a transportation fuel is proposed as a new paradigm in combination with fuel cells for vehicle power. The extent to which reductions can and will occur depends on the mix of technologies that constitute the hydrogen supply chain. This paper introduces an analysis and planning methodology for estimating emissions, greenhouse gases, and the energy efficiency of the hydrogen supply chain as a function of the technology mix on a life cycle, well to wheels (WTW) basis. The methodology, referred to as the preferred combination assessment (PCA) model, is demonstrated by assessing an illustrative set of hydrogen infrastructure (generation and distribution) deployment scenarios in California's South Coast Air Basin. Each scenario reflects a select mix of technologies for the years 2015, 2030, and 2060 including (1) the proportion of fossil fuels and renewable energy sources of the hydrogen and (2) the rate of hydrogen fuel cell vehicle adoption. The hydrogen deployment scenarios are compared to the existing paradigm of conventional vehicles and fuels with a goal to reveal and evaluate the efficacy and utility of the PCA methodology. In addition to a demonstration of the methodology, the salient conclusions reached from this first application include the following.
- •
- Emissions of criteria pollutants increase or decrease, depending on the hydrogen deployment scenario, when compared to an evolution of the existing paradigm of conventional vehicles and fuels. 相似文献
11.
The authors propose a novel model for forecasting the deployment of hydrogen energy systems based on a company value maximisation algorithm, designed to assist governments and other industry players in decision-making and the development of appropriate policy instruments. Current cost-minimisation approaches, such as MARKAL, have limitations particularly where price arbitrage between energy streams exists. A theoretical relationship between market sector valuations and investment activity is developed and the model is subsequently applied to the Scottish hydrogen energy market. Through the utilisation of net present value, revenue and profitability based valuations, the impact of investing in hydrogen energy infrastructure projects on three key market competitors is considered. It is shown that the three methods for calculating the value impact render different results suggesting that the use of a single method to assess forecast development scenarios, whether cost or value-based methods, may be misleading and that the holistic approach proposed is more realistic. The archivable value of this paper is to demonstrate the impact that investor expectations can have on investment decisions, a facet not captured in traditional methods of forecasting. 相似文献
12.
This paper aims at selecting different types of fuel cells using an MINLP (mixed-integer nonlinear programming) model, whilst considering the usage of waste hydrogen from the outlet gas. Hydrogen separation from the outlet gas is a good alternative from the economical and environmental perspectives. 相似文献
13.
Kazuto Tsuda Seiichiro Kimura Takahiro Takaki Yasuhiro Toyofuku Keisuke Adaniya Kosuke Shinto Kota Miyoshi Kyohei Hirata Liana Christiani Masaru Takada Naoya Kobayashi Shingo Baba Youhei Nagamatsu Megumi Takata 《International Journal of Hydrogen Energy》2014
Fuel cell vehicles (FCVs) are expected to be commercially available on the world market in 2015, therefore, introducing hydrogen-refueling stations is an urgent issue to be addressed. This paper proposes deployment plan of hydrogen infrastructure for the success of their market penetration in the Northeastern United States. The plan consists of three-timeline stages from 2013 to 2025 and divides the designated region into urban area, suburban area and area adjacent to expressway, so that easy to access to hydrogen stations can be realized. Station is chosen from four types of stations: off-site station, urban-type on-site station, suburban-type on-site station and portable station, associated with growing demand. In addition, on-site station is used as hydrogen production factory for off-site station to save total investment. This deployment plan shows that 83% of urban residents can reach station within 10 min in 2025, and that more than 90% people especially in four major cities: Boston, New York City, Philadelphia, and Washington, D.C. can get to station within 10 min by Geographic Information System (GIS) calculation. 相似文献
14.
《International Journal of Hydrogen Energy》2023,48(8):2877-2891
Hydrogen is often suggested as a universal fuel that can replace fossil fuels. This paper analyses the feasibility of direct hydrogen utilisation in all energy sectors in a 100% renewable energy system for Europe in 2050 using hour-by-hour energy system analysis. Our results show that using hydrogen for heating purposes has high costs and low energy efficiency. Hydrogen for electricity production is beneficial only in limited quantities to restrict biomass consumption, but increases the system costs due to losses. The transport sector results show that hydrogen is an expensive alternative to liquid e-fuels and electrified transport due to high infrastructure costs and respectively low energy efficiency. The industry sector may benefit from hydrogen to reduce biomass at a lower cost than in the other energy sectors, but electrification and e-methane may be more feasible. Seen from a systems perspective, hydrogen will play a key role in future renewable energy systems, but primarily as e-fuel feedstock rather than direct end-fuel in the hard-to-abate sectors. 相似文献
15.
Catalytic and technological aspects in the use of bio-ethanol as fuel to produce hydrogen in both internal (IR-MCFC) and indirect internal reforming (IIR-MCFC) configurations have been considered. In MCFC conditions, even operating at total ethanol conversion, hydrogen productivity depends on the catalyst efficiency to convert methane formed through a mechanism, which foresees as first step the dehydrogenation of ethanol to acetaldehyde and as a second step the decomposition of acetaldehyde to CO and CH4. Potassium doped Ni/MgO, Ni/La2O3 and Rh/MgO resulted to be the most promising catalysts to be used for the hydrogen production by steam reforming of bio-ethanol. Coke formation represents a serious problem, however, it can be drastically depressed by adding to the reaction stream a low amount of oxygen. 相似文献
16.
Paolo Agnolucci Ozlem Akgul William McDowall Lazaros G. Papageorgiou 《International Journal of Hydrogen Energy》2013
Hydrogen is widely recognised as an important option for future road transportation, but a widespread infrastructure must be developed if the potential for hydrogen is to be achieved. This paper and related appendices which can be downloaded as Supplementary material present a mixed-integer linear programming model (called SHIPMod) that optimises a hydrogen supply chains for scenarios of hydrogen fuel demand in the UK, including the spatial arrangement of carbon capture and storage infrastructure. In addition to presenting a number of improvements on past practice in the literature, the paper focuses attention on the importance of assumptions regarding hydrogen demand. The paper draws on socio-economic data to develop a spatially detailed scenario of possible hydrogen demand. The paper then shows that assumptions about the level and spatial dispersion of hydrogen demand have a significant impact on costs and on the choice of hydrogen production technologies and distribution mechanisms. 相似文献
17.
Qingqing Zhang Jianmei Feng Jie Wen Xueyuan Peng 《International Journal of Hydrogen Energy》2018,43(41):19231-19241
The scroll pump has a great potential to recirculate hydrogen in a fuel-cell vehicle (FCV) because of its high efficiency, low noise and vibration, reliable operation, and a wide range of adjustable flow. This paper presents three-dimensional transient computational fluid dynamics (CFD) modelling of a scroll-type hydrogen pump used in FCVs, including leakage flow through both the radial clearance (RC) and axial clearance (AC). A dynamic mesh was generated for the moving orbiting scroll, and high-quality hexahedral structured grids with sufficient grid-density were applied to the clearances to solve the multi-scale problem. The pressure and velocity fields were obtained at different rotating angles to reveal the dynamic characteristics in the compression chambers. The simulation results showed that the radial leakage through AC has more significant influence on the volumetric efficiency than the tangential leakage through RC, especially on scroll-type hydrogen pumps. The presented modelling and simulation methods were validated experimentally by operating a scroll air compressor at different speeds and pressure ratios. The volumetric efficiency of the scroll pump was 85.39% with 0.02 mm AC and 0.02 mm RC, 81.43% with 0.02 mm AC and 0.04 mm RC, and 70.17% with 0.04 mm AC and 0.02 mm RC. Further, it was found that the performance of scroll-type hydrogen pumps is more sensitive to rotating speed than air scroll pumps under the same conditions. With hydrogen, the volumetric efficiency increased by 30.68% when the rotating speed was increased from 3000 r·min?1 to 6000 r·min?1; with air, the volumetric efficiency increased by 12.81%. Therefore, it is necessary to consider both AC and RC in the CFD modelling of scroll machines, particularly in the case of hydrogen scroll pumps. 相似文献
18.
Bilal Abderezzak Benyoucef Khelidj Miloud Tahar Abbes 《International Journal of Hydrogen Energy》2014
Hydrogen is an energy carrier that can be used in industry, residences, transportation, and mobile applications. One of the main attractions for hydrogen is the environmental advantage over fossil fuels. However, Polymer Electrolyte Membrane Fuel Cells, (PEMFC), is an integral part of the future hydrogen economy, they are highly efficient and a low-polluting technology. Numerous applications exist; one of the promising applications is the automotive industry. For this report a comprehensive literature survey is conducted. The findings of the literature survey include hydrogen production and fuel cell models that fit into two broad categories, that is, analytical and empirical. This work is a presentation of our original research and development regarding the production and utilization of a solar hydrogen and its use in a PEM single cell. In order to facilitate the understanding of the charge transfer phenomena in the PEM single cell, a modeling tool with visual basic was developed. All the experiences and results were illustrated in this work. 相似文献
19.
Christoph Stiller Ann Mari Svensson Steffen Møller-Holst Ulrich Bünger Kari Aamodt Espegren Øystein Bindesbøll Holm Asgeir Tomasgård 《Energy》2008
Norway is a nation with an abundant supply of energy, both from fossil and renewable resources. Due to limited domestic demand, Norway is today exporting large amounts of petroleum products. For the future, various options for export of CO2-lean energy exist, both from Northern and Southern Norway, and both from fossil sources (including carbon capture and storage), and renewable energies (particularly wind power). Transport vectors are hydrogen pipelines, liquid hydrogen ships and HVDC cables, and a plausible customer is central Europe due to its proximity, high population density and lack of domestic energy resources. 相似文献
20.
This paper analyzes the technical, economic, and environmental characteristics of different pathways for supplying hydrogen to vehicles in China. A life-cycle accounting of “well-to-tank” hydrogen delivery for 11 different infrastructure pathways reveals different relative economic costs and environmental benefits. Coal-derived methanol as a hydrogen carrier appears particularly promising for China from an economic standpoint. The analysis considers three different infrastructure models: (1) “point-to-point” distribution from well to fueling station; (2) an “idealized city model” with radial and network distribution within a city grid; and (3) a model of Beijing infrastructure growth that evolves over time. The analytical results, the infrastructure models, and the practical case of Beijing provide policy-makers with new tools for hydrogen development strategies. 相似文献