首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate the influence of Al content and effect of Ni loading on the structure and catalytic activity for hydrodenitrogenation reaction of o-toluidine, a series of mesoporous Al-SBA-15 supported Ni–Re sulphided catalysts were prepared. The textural and chemical properties of support and catalyst were analysed using XRD, N2-sorption studies, DRS UV–Vis, SEM, HRTEM, NH3-TPD, TPR and XPS. These characterizations indicate that the incorporation of Al content into the SBA-15 framework leads to the formation of moderate acid sites, which shows enhanced catalytic activity. The maximum catalytic activity in 1 wt%Ni-5wt%Re/Al-SBA-15(10) catalyst is due to fine dispersion of Re and Ni over the support, strong metal–support interaction, high degree of sulphidation and more sulphur atoms on the surface.  相似文献   

2.
In this study, the catalytic activity of the mesoporous SBA-15 supported Ni–Al, Ni–Zr, and Ni–Ti catalysts prepared by an impregnation method were investigated in dry reforming of methane. In addition, Al incorporated SBA-15 (Al–SBA-15) materials used as catalyst support were synthesized following a one-pot hydrothermal route in three different conditions: synthesis in the presence of only HCl, only NaCl, and both HCl and NaCl (denoted as A, S, and B, respectively). All catalysts were characterized by XRD, N2 adsorption-desorption isotherms, ICP-OES, DRIFTS, SEM, TEM-EDX and TGA techniques before and/or after reaction tests. Among Al, Zr, and Ti impregnated catalysts, Ni–Al impregnated catalyst showed the highest activity in dry reforming of methane. According to activity test results, Al–SBA-15 supported Ni catalyst prepared by the one-pot hydrothermal route in the presence of both HCl and NaCl showed the best catalytic activity with high methane (81%) and carbon dioxide conversion (88%) values at 750 °C. The highest H2 and CO selectivity values were obtained with the same catalyst with an H2/CO molar ratio of 0.80. Therefore, these results showed that partial Al (0.11%) incorporated into the structure of SBA-15 was sufficient to improve the catalytic activity of the catalyst in dry reforming of methane.  相似文献   

3.
The importance of La2O3 or both La2O3 and CeO2 promoters on the formation of nickel phyllosilicate (Ni3Si4O12H2) as a precursor of Ni/SBA-15 for ethanol steam reforming (ESR) was investigated. The catalyst was made by a one-step modified conventional triblock copolymer synthesis method (pH-Adjustment with ammonium hydroxide). The prepared catalysts were characterized by N2 adsorption/desorption isotherms, XRD, H2-TPR, SEM-EDS and TGA-DSC techniques. The N2 adsorption/desorption isotherms identified the mesoporous nature of the catalysts and the XRD patterns of the calcined catalysts confirmed the formation of nickel-phyllosilicate structure. The H2-TPR analysis revealed that the La2O3 loading considerably increased the interaction between nickel and silica frame work of SBA-15 support. The ability of these catalysts for hydrogen production from ethanol steam reforming (ESR) was evaluated in a packed bed reactor at 650 °C. In the case of Ni/SBA-15 catalysts without and with La2O3 promoter, the ESR experiments experienced metal sintering and coke formation. Meanwhile, the catalytic activity of both La2O3 and CeO2 promoted Ni/SBA-15 catalyst (Ni-La2O3-CeO2/SBA-15) remained stable with time on stream in terms of GPR and hydrogen selectivity. The stable performance of this catalyst was explained by the strong interaction of nickel with SBA-15 promoted by La2O3 and the suppression of coke formation by CeO2.  相似文献   

4.
Using mesoporous SBA-15 (Santa Barbara Amorphous No. 15, a mesoporous material) as support, Pd–Zn nanocatalysts with varying Pd and Zn content were tested for hydrogen production from methanol by partial oxidation and steam reforming reactions. The physico-chemical characteristics of the synthesized SBA-15 support were confirmed by XRD, N2 adsorption, SEM and TEM analyses. The PdZn alloy formation during the reduction of Pd–Zn/SBA-15 was revealed by XRD and DRIFT study of adsorbed CO. Also, the correlation between Pd and Zn loadings and PdZn alloy formation was studied by XRD and TPR analyses. The metallic Pd surface area and total uptakes of CO and H2 were measured by chemisorption at 35 °C. The metallic Pd surface area values are in linear proportion with the Pd loading. The formation of PdZn alloy during high temperature reduction was confirmed by a shift in absorption frequency of CO on Pd sites to lower frequency due to higher electron density at metal particles resulted from back-donation. The reduced Pd–Zn/SBA-15 catalysts were tested for partial oxidation of methanol at different temperatures and found that catalyst with 4.5 wt% Pd and 6.75 wt% Zn on SBA-15 showed better H2 selectivity with suppressed CO formation due to the enhanced Pd dispersion as well as larger Pd metallic surface area. The O2/CH3OH ratio is found to play a significant role in CH3OH conversion and H2 selectivity. The performance of 4.5 wt% Pd–6.75 wt% Zn/SBA-15 catalyst in steam reforming of methanol was also tested. Comparatively, the H2 selectivity is significantly higher than that in partial oxidation, even though the CH3OH conversion is less. Finally, the long term stability of the catalyst was tested and the nature of PdZn alloy after the reactions was found to be stable as revealed from the XRD pattern of the spent catalysts.  相似文献   

5.
Ni-based catalysts (Ni, Ni–La2O3, and Ni–La2O3–CeO2) on mesoporous silica supports (SBA-15 and KIT-6) were prepared by an incipient wetness impregnation and tested in glycerol steam reforming (GSR) for hydrogen-rich gas production. The catalysts were characterized by the N2-physisorption, TPD, X-ray diffraction (XRD), SEM-EDS, and TEM techniques. N2-physisorption results of calcined catalysts highlight that adding of La2O3 increased surface area of the catalyst by preventing pore mouth plugging in SBA-15, which was frequently observed due to the growth of NiO crystals. A set of GSR experiments over the catalysts were performed in an up-flow continuous packed-bed reactor at 650 °C and atmospheric pressure. The highest hydrogen concentration of 62 mol% was observed with a 10%Ni–5%La2O3 –5%CeO2/SBA-15 catalyst at a LHSV of 5.8 h−1. Adding of CeO2 to the catalyst appeared to increase catalytic stability by facilitating the oxidative gasification of carbon formed on/near nickel active sites of Ni–La2O3–CeO2/SBA-15 and Ni–La2O3–CeO2/KIT-6 catalyst during the glycerol steam reforming reaction.  相似文献   

6.
The effect of nickel precursor on Ni/SBA-15 catalysts was studied in ethanol steam reforming (ESR) for hydrogen production. These catalysts were prepared via incipient-wetness impregnation method using nickel nitrate and nickel citrate precursors, respectively (denoted as Ni/SBA-15(N) and Ni/SBA-15(C), respectively), and characterized by various techniques including H2-TPR, XRD, TEM and TG. It was found that the use of nickel citrate precursor, compared to nickel nitrate precursor, could greatly strengthen the NiO-support interaction and promote the homogeneous distribution of nickel species, to obtain the small nickel particles with high dispersion. After a 25 h time-on-stream test, much lower coke deposition was formed over Ni/SBA-15(C) than Ni/SBA-15(N). Moreover, NiCx species had be found over the used Ni/SBA-15(C), in which the carbon could be removed easily at lower temperature to exposure the active Ni sites; While carbon nanofibers with regular graphite-structure were the primary coke species over the spent Ni/SBA-15(N), which was difficultly remove and thus covered the active Ni sites easily. Due to these, Ni/SBA-15(C) displayed the higher catalytic activities and better stabilities in ESR than Ni/SBA-15(N). In summary, nickel citrate is an excellent precursor for the preparation of Ni/SBA-15 catalysts with high dispersion and strong interaction.  相似文献   

7.
5 wt% of Ni/SBA-15 supported with numerous Zr loading (1–7 wt%) were produced using sol-gel technique at 60 °C. The influence of Zr promoter on the physiochemical properties of Ni/SBA-15 catalysts for methane dry reforming were examined in a fixed-bed reactor at 800 °C. Analytical characterizations including XRD, BET, FTIR, N2 adsorption desorption, TEM and TGA were conducted to study the physiochemical properties of Zr/Ni/SBA-15 catalysts for the sake of identification of the amount of coke deposition formed on the spent catalyst. Increasing the amount of Zr loading from 1 to 7 wt% supported on Ni/SBA-15 reduced the catalyst's surface area as was proven from the physiochemical properties of Zr/Ni/SBA-15 catalyst. The catalytic activity test revealed that the optimum Zr loading was 1 wt% at which CH4 and CO2 conversions were 87.07% and 4.01%, meanwhile H2:CO ratios was 0.42. This result was owing to the existence of the Zr species in promoting a good dispersion of Nickel (Ni) active sites on the catalyst surface as affirmed from XRD and FTIR results. The latest discovery indicates that promotion of 1 wt% Zr onto Ni/SBA-15 can prompt excellent catalytic performance in CRM.  相似文献   

8.
In order to reduce the coke formation over a conventional Ni/γ-Al2O4 catalyst and increase the activity at low temperature, we used the impregnation approach to synthesize MgO (30.0 wt.%)/Zeolite Y catalysts loaded with bimetallic Ni(10.0 wt.%)/Ga(10.0–30.0 wt.%) and study the steam-reforming reactions of ethanol. The Ga-loaded catalyst impregnated between the Ni and Mg components exhibits significantly higher reforming reactivity compared to the conventional Ni/Mg/Zeolite Y catalyst. The main products from steam reforming over the Ni/Ga/Mg/Zeolite Y catalyst are only H2 and CH4 at above 550 °C, and the catalytic performances differ according to the amount of Ga. The H2 production and ethanol conversion are maximized at 87% and 100%, respectively, over Ni(10)/Ga(30)/Mg(30)/Zeolite Y at 700 °C for 1 h at CH3CH2OH:H2O = 1:3 and a gas hourly space velocity (GHSV) of 6740 h−1, and the high performance is maintained for up to 59 h.  相似文献   

9.
Novel Co (10%) catalysts supported on ZnO and promoted with Fe and Mn (1%) were synthesized and characterized by high-resolution transmission electron microscopy (HRTEM), electron energy-loss spectroscopy (EELS), X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS). Their catalytic activity for steam reforming of ethanol was compared with that of Ni catalysts supported on La2O3-Al2O3. Experiments at 400 and 500 °C, steam to carbon ratios of 2 and 4, and a wide interval of contact time were analyzed following a multifactorial experimental design. At 500 °C and a steam to carbon molar ratio of 4, complete conversion of ethanol was achieved above a contact time of 200 g min mol−1 for all catalysts. The ratio of selectivity between hydrogen and methane was around 23 molH2/molCH4 in the Co catalysts, while it approached the thermodynamic equilibrium (5.7 molH2/molCH4) in the Ni catalysts. The Co catalysts do not promote methane-forming reactions like ethanol cracking and acetaldehyde decarbonilation, nor do they facilitate the reverse methane steam reforming reaction. The catalytic behavior of cobalt is enhanced by promotion with iron or manganese through the formation of bimetallic particles, which facilitates cobalt reducibility. This suggests that Co-Mn/ZnO and Co-Fe/ZnO catalysts have a good potential for their use for ethanol reforming at moderate temperature.  相似文献   

10.
Production of hydrogen by methanol steam reforming has been studied over a series of Ni/Al layered double hydroxide catalysts prepared by the co-precipitation method, with the aim to develop a stable catalyst that can be used in a membrane-joint performer at temperatures greater than 300 °C. H2, CO and CO2 are generally the major products together with trace amounts of CH4. The presence of potassium and/or sodium cations was found to improve the activity of methanol conversion. The selectivity for CO2 rather than CO was better with K ions than Na ions, especially at higher temperatures (e.g. 390–400 °C). Methanol steam reforming over a K-promoted Ni/Al layered double hydroxide catalyst resulted in better activity and similar stability compared to a commercial Cu catalyst.  相似文献   

11.
Mesoporous Ni–Al2O3 (XNiAE) aerogel catalysts with different Ni/Al atomic ratio (X) were prepared by a single-step sol-gel method and a subsequent CO2 supercritical drying method. The effect of Ni/Al atomic ratio of mesoporous XNiAE aerogel catalysts on their physicochemical properties and catalytic activity for steam reforming of liquefied natural gas (LNG) was investigated. Textural properties and chemical properties of XNiAE catalysts were strongly influenced by Ni/Al atomic ratio. Nickel species were highly dispersed on the surface of XNiAE catalysts through the formation of surface nickel aluminate phase. In the steam reforming of LNG, both LNG conversion and hydrogen yield showed volcano-shaped curves with respect to Ni/Al atomic ratio. Average nickel diameter of XNiAl catalysts was well correlated with LNG conversion and hydrogen yield over the catalysts. Among the catalysts tested, 0.35NiAE (Ni/Al = 0.35) catalyst with the smallest average nickel diameter showed the best catalytic performance. The highest surface area, the largest pore volume, the largest average pore size, and the highest reducibility of 0.35NiAE catalyst were also partly responsible for its superior catalytic performance.  相似文献   

12.
Ethanol–water mixtures were converted directly into H2 with 67.6% yield and >98% conversion by catalytic steam reforming at 350 °C over modified Ni/Y2O3 catalysts heat treated at 500 °C. XRD was used to test the structure and calculate the grain sizes of the samples with different scan rates. The initial reaction kinetics of ethanol over modified and unmodified Ni/Y2O3 catalysts were studied by steady state reaction and a first-order reaction with respect to ethanol was found. TPD was used to analyze mechanism of ethanol desorption over Ni/Y2O3 catalyst. Rapid vaporization, efficiency tube reactor and catalyst were used so that homogeneous reactions producing carbon, acetaldehyde, and carbon monoxide could be minimized. And even no CO detective measured during the first 49 h reforming test on the modified catalyst Ni/Y2O3. This process has great potential for low cost H2 generation in fuel cells for small portable applications where liquid fuel storage is essential and where systems must be small, simple, and robust.  相似文献   

13.
As the only H2 resource on aircraft from the steam reforming of the jet fuels on board, catalytic steam reforming of JP-10 (one of Jet fuels) over nickel-based catalyst Ni/SBA-15 were first carried out in a fixed bed tube reactor to produce hydrogen on-site or on board. A series of Ni/SBA-15 catalysts with different Ni content (3, 5, 8 and 10.8 wt%) were prepared by a modified incipient wetness impregnation method with addition of sucrose as ligand. And the effect of operation conditions of temperature (630–700 °C), nickel loading, liquid hour space velocity (LHSV = 5, 10, 15 ml/gcat·h), steam to carbon molar ratio (S/C = 3, 5) on the catalytic activity and selectivity was investigated. It was found that 8Ni/SBA-15 was the optimal catalyst for steam reforming of JP-10 even with a higher LHSV and fuel gas concentration, and approximately 100% conversion of JP-10 with over 80% selectivity to hydrogen under the recommended experimental conditions of 680 °C, S/C of 5, LHSV of 10 ml/gcat·h. The catalytic activity of 8Ni/SBA-15 dropped slowly to 84% after 6.5 h in the stability test and the carbon deposited was less with just 6% mass loss from TGA measurement (coke deposition rate 0.01gC/gcath), which ascribed to possible reasons including confine effect of mesochannel of SBA-15, strengthened structure of mesochannels due to embeded Ni particles, and higher temperature to suppress the main carbon producing reaction.  相似文献   

14.
Ni/SBA-15-CD(1/X) catalysts were prepared by the impregnation of a certain amount of Ni(NO3)2 and various contents of β-cyclodextrin (CD), in which 1/X indicates the molar ratio of CD to Ni. The physicochemical properties of the catalysts were characterized by BET, XRD, TEM, TPR and TGA, and their catalytic performance in the CO2 reforming of methane to syngas was evaluated using a fixed-bed quartz reactor. The characterization results revealed that Ni/SBA-15-CD(1/X) prepared with n(CD)/n(Ni) ratios in the range of 1/66–1/33 possessed smaller NiO particles and exhibited stronger interactions between NiO and SBA-15, whereas NiO particles were not well-dispersed on Ni/SBA-15-CD(1/X) catalysts prepared with further CD addition (1/X = 1/8 and 1/1). The reaction results indicated that the better-dispersed Ni/SBA-15-CD(1/X) catalysts, such as Ni/SBA-15-CD(1/66), Ni/SBA-15-CD(1/50) and Ni/SBA-15-CD(1/33), exhibited higher conversions and stronger abilities to resist carbon deposition. Regarding the role of CD in dispersing Ni particles, it could be speculated that complexes were formed between CD and Ni2+, as well as NO3, which would change the state of Ni species during the impregnation and heat treatment processes.  相似文献   

15.
Catalytic decomposition of methane produces COX-free hydrogen, which is necessary for PEM fuel-cell applications. In this paper, hydrogen production by catalytic decomposition of methane at 550 °C over Ni on HY, USY, SiO2 and SBA-15 supports is examined at atmospheric pressure. The catalytic activities and the life times of the catalysts are evaluated and discussed. The relationships between catalyst performance and characterization of the fresh and used catalysts are discussed with the results obtained from SEM, XRD, TPR, solid acidity and the measured carbon contents generated of the used samples along with their H2 production rates. Among all the catalysts tested, Ni supported on HY zeolite showed a higher activity of 955 mol H2 (mol Ni)−1 and a longevity of 720 min at 550 °C.  相似文献   

16.
This study examined the effects of advanced bimetallic catalytic species of Ni and Mo on hydrogen production from ethanol steam reforming. NixMoy/SBA‐15 exhibited significantly higher ethanol steam‐reforming activity at mild temperatures than monometallic Ni/SBA‐15; the highest activity was achieved using the Ni0.95Mo0.05/SBA‐15 catalyst. H2 production and ethanol conversion were maximized at 70–87% and 90–92%, respectively, over the temperature range of 500 to 800 °C with an EtOH : H2O ratio of 1:3 and a gas hourly space velocity of 3000 h?1. This highlights the synergy between the Ni and Mo loading on SBA‐15 during ethanol steam reforming through the inhibition of Ni particle agglomeration and the consequent decrease in catalytic deactivation. In the proposed mechanism for ethanol steam reforming, Mo oxide promotes CH4‐steam reforming at lower temperatures and depresses the CO‐water gas shift reaction. Overall, hydrogen production is significantly higher over NixMoy/SBA‐15 than over monometallic Ni/SBA‐15 despite the evolution of CO gas. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Ni/Al2O3 catalysts containing 5 wt% of Ni and modified by addition of CaO (0–5 wt%) were tested in ethanol steam reforming reaction in order to reduce the dehydration ethanol reaction, which produces ethylene that may polymerize and produce coke. The catalysts were prepared by impregnation (I) and co-precipitation (C) methods. All catalysts were investigated for ethanol steam reforming and the catalytic performance was compared in terms of additive addition. The catalysts 5Ni–5Ca/Al (I) and 5Ni–5Ca/Al (C) were less selective to ethylene production and therefore were characterized by the following techniques: energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), temperature programmed reduction (TPR), X-ray absorption near edge structure (XANES), specific surface area by the BET method, scanning electron microcopy (SEM) and isopropanol decomposition reaction. By comparing the catalysts, the 5Ni–5Ca/Al (I) catalyst presented the lowest acidity and carbon deposition, and also presented no deactivation in 24 h of catalytic test.  相似文献   

18.
A commercial Ni-based catalyst is wash-coated on a monolith made of 50 μm-thick fecralloy plates. Compared with the same volume of coarsely powdered Ni catalysts, the monolith wash-coated Ni catalysts give higher methane conversion in the steam reforming reaction, especially at gas hourly space velocities (GHSV) higher than 28,000 h−1, and with no pressure drop. A higher conversion of the monolith catalyst is obtained, even though it contains a lower amount of active catalyst (3 g versus 17 g for a powdered catalyst), which indicates that the heat-transfer capability of the wash-coated Ni catalyst is significantly enhanced by the use of a metal monolith. The efficacy of the monolith catalyst is tested using a shell-and-tube type heat-exchanger reactor with 912 cm3 of the monolith catalyst charged on to the tube side and hot combusted gas supplied to the shell side in a counter-current direction to the reactant flow. A methane conversion greater than 94% is obtained at a GHSV of 7300 h−1 and an average temperature of 640 °C. Nickel catalysts should first be reduced to become active for steam reforming. Doping a small amount (0.12 wt.%) of noble metal (Ru or Pt) in the commercial Ni catalyst renders the wash-coated catalyst as active as a pre-reduced Ni catalyst. Thus, noble metal-doped Ni appears useful for steam reforming without any pre-reduction procedure.  相似文献   

19.
Zirconia supports were prepared by a sol–gel method (S-ZrO2) and by a templating sol–gel method (M-ZrO2). Nickel catalysts supported on zirconia were then prepared by an incipient wetness impregnation method for use in hydrogen production by auto-thermal reforming of ethanol. For comparison, a commercial zirconia (C-ZrO2) was also employed as a support for nickel catalyst. The effect of preparation method of zirconia on the catalytic property and catalytic performance of supported nickel catalysts (Ni/C-ZrO2, Ni/S-ZrO2, and Ni/M-ZrO2) was investigated. The crystalline and physical property of zirconia supports and the catalytic performance of supported nickel catalysts were strongly affected by the preparation method of zirconia. BET surface area and pore volume were decreased in the order of M-ZrO2 > S-ZrO2 > C-ZrO2. Both M-ZrO2 and S-ZrO2 supports showed only tetragonal phase of ZrO2, while C-ZrO2 support exhibited tetragonal and monoclinic phases of ZrO2. Crystalline size of nickel species in the Ni/ZrO2 catalysts decreased with increasing surface area and pore volume of ZrO2 supports. All the Ni/ZrO2 catalysts exhibited 100% conversion of ethanol at 500 °C, while product distributions over the Ni/ZrO2 catalysts were different depending on the preparation method of zirconia. Among the catalysts tested, the Ni/M-ZrO2 catalyst showed the best catalytic performance in hydrogen production by auto-thermal reforming of ethanol. Well developed mesopore, high surface area, and pure tetragonal phase of ZrO2 were responsible for fine nickel dispersion and high catalytic performance of Ni/M-ZrO2. C–C bond cleavage reaction and methane steam reforming reaction were also accelerated over the Ni/M-ZrO2 catalyst.  相似文献   

20.
Introducing promoters on Ni-based catalysts for CO2 methanation have been proved to be positive for enhancing their performance. And the correlation of the promotion mechanism and the reaction pathway is significant for designing efficient catalysts. In this contribution, series of Zr species promoted SBA-15 supported Ni catalysts were prepared by citric acid complexation method under a range of Zr/Ni atomic ratios from 0 to 2.5. In situ and ex situ characterizations were carried out. It was found that the addition of citric acid was conductive to improve CH4 selectivity due to the higher concentrations of Ni0 confined in SBA-15, harvesting sufficient H atoms for CH4 formation following formate pathway via a formyl intermediate. Furthermore, a coverage layer of Zr species was found on the support at Zr/Ni = 1.7, which interacted with the Ni particles, providing higher concentrations of medium basic sites for CO2 activation. Accordingly, the optimum catalytic performance was obtained on ZrNi-1.7(CI), achieving CO2 conversion as high as 78.1% and nearly 100% CH4 selectivity at 400 °C, following the formate hydrogenation pathway. In addition, the ZrNi-1.7(CI) showed good stability owing to the confinement effect of SBA-15 and the Ni–Zr interaction, no carbon deposits were detected after 50 h test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号