首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose is a potential fuel for fuel cells because it is renewable, abundant, non-toxic, and easy in handle and store. Conventional glucose fuel cells that use enzymes and micro-organisms as the catalyst are limited by their extremely low power output and rather short durability. In this work, a direct glucose fuel cell that uses an anion-exchange membrane and in-house non-platinum electrocatalysts is developed. It is shown that this type of direct glucose fuel cell with a relatively cheap membrane and catalysts can result in a maximum power density as high as 38 mW cm−2 at 60 °C. The high performance is attributed mainly to the increased kinetics of both the glucose oxidation reaction and the oxygen reduction reaction rendered by the alkaline medium with the anion-exchange membrane.  相似文献   

2.
A single alkaline direct ethanol fuel cell (alkaline DEFC) with an anion-exchange membrane and non-platinum (non-Pt) catalysts is designed, fabricated, and tested. Particular attention is paid to investigating the effects of different operating parameters, including the cell operating temperature, concentrations of both ethanol and the added electrolyte (KOH) solution, as well as the mass flow rates of the reactants. The alkaline DEFC yields a maximum power density of 60 mW cm−2, a limiting current density of about 550 mA cm−2, and an open-circuit voltage of about 900 mV at 40 °C. The experimental results show that the cell performance is improved on increasing the operating temperature, but there exists an optimum ethanol concentration under which the fuel cell has the best performance. In addition, cell performance increases monotonically with increasing KOH concentration in the region of low current density, while in the region of high current density, there exists an optimum KOH concentration in terms of cell performance. The effect of flow rate of the fuel solution is negligible when the ethanol concentration is higher than 1.0 M, although the cell performance improves on increasing the oxygen flow rate.  相似文献   

3.
This report details development of an air-breathing direct methanol alkaline fuel cell with an anion-exchange membrane. The commercially available anion-exchange membrane used in the fuel cell was first electrochemically characterized by measuring its ionic conductivity, and showed a promising result of 1.0 × 10−1 S cm−1 in a 5 M KOH solution. A laboratory-scale direct methanol fuel cell using the alkaline membrane was then assembled to demonstrate the feasibility of the system. A high open-circuit voltage of 700 mV was obtained for the air-breathing alkaline membrane direct methanol fuel cell (AMDMFC), a result about 100 mV higher than that obtained for the air-breathing DMFC using a proton exchange membrane. Polarization measurement revealed that the power densities for the AMDMFC are strongly dependent on the methanol concentration and reach a maximum value of 12.8 mW cm−2 at 0.3 V with a 7 M methanol concentration. A durability test for the air-breathing AMDMFC was performed in chronoamperometry mode (0.3 V), and the decay rate was approximately 0.056 mA cm−2 h−1 over 160 h of operation. The cell area resistance for the air-breathing AMDMFC was around 1.3 Ω cm2 in the open-circuit voltage (OCV) mode and then is stably supported around 0.8 Ω cm2 in constant voltage (0.3 V) mode.  相似文献   

4.
An alkaline direct ethylene glycol fuel cell (DEGFC) with an alkali-doped polybenzimidazole membrane (APM) is developed and tested. It is demonstrated that the use of APMs enables the present fuel cell to operate at high temperatures. The fuel cell results in the peak power densities of 80 mW cm−2 at 60 °C and 112 mW cm−2 at 90 °C, respectively. The power output at 60 °C is found to be 67% higher than that by DEGFCs with proton exchange membranes, which is mainly attributed to the superior electrochemical kinetics of both ethylene glycol oxidation and oxygen reduction reactions in alkaline media.  相似文献   

5.
Plasma grafting is employed to prepare alkaline anion-exchange membranes in this study. The attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis demonstrate that the benzyltrimethylammonium cationic groups are successfully introduced into the polyvinyl chloride matrix via plasma grafting, quaternization and alkalization. The plasma-grafted alkaline anion-exchange membrane exhibits a satisfactory ionic exchange capacity (1.01 mmol g−1), thermal stability, mechanical property, ionic conductivity (0.0145 S cm−1) and methanol permeability (9.59 × 10−12 m2 s−1), suggesting a great potential for application in direct alcohol fuel cells. The open circuit voltage of air-breathing ADAFC using plasma-grafted alkaline anion-exchange membrane is 0.796 V with 1 M EtOH solution at ambient temperature.  相似文献   

6.
In this work, a hybrid fuel cell is developed and tested, which is composed of an alkaline anode, an acid cathode, and a cation exchange membrane. In this fuel cell, ethylene glycol and hydrogen peroxide serve as fuel and oxidant, respectively. Theoretically, this fuel cell exhibits a theoretical voltage reaching 2.47 V, whereas it is experimentally demonstrated that the hybrid fuel cell delivers an open‐circuit voltage of 1.41 V at 60°C. More impressively, this fuel cell yields a peak power density of 80.9 mW cm?2 (115.3 mW cm?2 at 80°C). Comparing to an open‐circuit voltage of 0.86 V and a peak power density of 67 mW cm?2 previously achieved by a direct ethylene glycol fuel cell operating with oxygen, this hybrid direct ethylene glycol fuel cell boosts the open‐circuit voltage by 62.1% and the peak power density by 20.8%. This significant improvement is mainly attributed not only to the high‐voltage output of this hybrid system design but also to the faster kinetics rendered by the reduction reaction of hydrogen peroxide.  相似文献   

7.
A novel direct ethanol fuel cell with high power density   总被引:1,自引:0,他引:1  
A new type of direct ethanol fuel cell (DEFC) that is composed of an alkaline anode and an acid cathode separated with a charger conducting membrane is developed. Theoretically it is shown that the voltage of this novel fuel cell is 2.52 V, while, experimentally it has been demonstrated that this fuel cell can yield an open-circuit voltage (OCV) of 1.60 V and a peak power density of 240 mW cm−2 at 60 °C, which represent the highest performance of DEFCs that has so far been reported in the open literature.  相似文献   

8.
A novel polymer-inorganic composite electrolyte for direct methanol alkaline fuel cells (DMAFCs) is prepared by physically blending fumed silica (FS) with polyvinyl alcohol (PVA) to suppress the methanol permeability of the resulting nano-composites. Methanol permeability is suppressed in the PVA/FS composite when comparing with the pristine PVA membrane. The PVA membrane and the PVA/FS composite are immersed in KOH solutions to prepare the hydroxide-conducting electrolytes. The ionic conductivity, cell voltage and power density are studied as a function of temperature, FS content, KOH concentration and methanol concentration. The PVA/FS/KOH electrolyte exhibits higher ionic conductivity and higher peak power density than the PVA/KOH electrolyte. In addition, the concentration of KOH in the PVA/FS/KOH electrolytes plays a major role in achieving higher ionic conductivity and improves fuel cell performance. An open-circuit voltage of 1.0 V and a maximum power density of 39 mW cm−2 are achieved using the PVA/(20%)FS/KOH electrolyte at 60 °C with 2 M methanol and 6 M KOH as the anode fuel feed and with humidified oxygen at the cathode. The resulting maximum power density is higher than the literature data reported for DMAFCs prepared with hydroxide-conducting electrolytes and anion-exchange membranes. The long-term cell performance is sustained during a 100-h continuous operation.  相似文献   

9.
A study of a direct methanol fuel cell (DMFC) operating with hydroxide ion conducting membranes is reported. Evaluation of the fuel cell was performed using membrane electrode assemblies incorporating carbon-supported platinum/ruthenium anode and platinum cathode catalysts and ADP alkaline membranes. Catalyst loadings used were 1 mg cm−2 Pt for both anode and cathode. The effect of temperature, oxidant (air or oxygen) and methanol concentration on cell performance is reported. The cell achieved a power density of 16 mW cm−2, at 60 °C using oxygen. The performance under near ambient conditions with air gave a peak power density of approximately 6 mW cm−2.  相似文献   

10.
Porous silver membranes were investigated as potential substrates for alkaline fuel cell cathodes and as an approach for studying pore size effects in alkaline fuel cells. The silver membrane provides both the electrocatalytic function, mechanical support and a means of current collection. Relatively high active surface area (∼0.6 m2 g−1) results in good electrochemical performance (∼200 mA cm−2 at 0.6 V and ∼400 mA cm−2 at 0.4 V) in the presence of 6.9 M KOH. The electrode fabrication technique is described and polarization curves and impedance measurements are used to investigate the performance. The regular structure of the electrodes allows parametric studies of the performance of electrodes as a function of pore size. Impedance spectra have been fitted with a proposed equivalent circuit which was obtained following the study of impedance measurements under different experimental conditions (electrolyte concentration, oxygen concentration, temperature, and pore size). The typical impedance spectra consisted of one high frequency depressed semi-circle related to porosity and KOH wettability and one low-frequency semi-circle related to kinetics. A passive air-breathing hydrogen-air fuel cell constructed from the membranes in which they act as mechanical support, current collector and electrocatalyst achieves a peak power density of 50 mW cm−2 at 0.40 V cell potential when operating at 25 °C.  相似文献   

11.
The active, carbon-supported Ir–V nanoparticle catalysts were successfully synthesized using IrCl3 and NH4VO3 as the Ir and V precursors in ethylene glycol refluxing at 120 °C with varying pH values, then further reduction under hydrogen atmosphere at 200 °C. The nanostructured catalysts were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscopy (TEM). These carbon-supported catalysts give a good dispersion of Ir–V/C electrocatalysts with mean particle size of 2–3 nm, thus leading to a marked promotion of hydrogen oxidation reaction. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry techniques (CV) were used to characterize on-line the performance of the proton exchange membrane fuel cell (PEMFC) using several anode catalysts at different pH values. It was found that the pH value for the synthesis of catalysts affects the performance of electrocatalysts significantly, based on the discharge characteristics of the fuel cell. High cell performance on the anode was achieved with a loading of 0.4 mg cm−2 40%Ir–10%V/C catalyst synthesized at pH 12, which results in a maximum a power density of 1008 mW cm−2 at 0.6 V and 70 °C. This is 50% higher performance than that for commercial available Pt/C catalyst. Fuel cell life test at a constant current density of 1000 mA cm−2 demonstrated an initial stability up to 100 h generating a cell voltage of 0.6 V, which strongly suggests that the novel Ir–V/C nanoparticle catalysts proposed in this work could be promising for PEMFC.  相似文献   

12.
Non-precious metal catalysts (NPMCs) synthesized from the precursors of carbon, nitrogen, and transition metals were investigated as an alternate cathode catalyst for alkaline fuel cells (AFCs). The procedures to synthesize the catalyst and the post-treatment were tailored to refine its electrocatalytic properties for oxygen reduction reaction (ORR) in alkaline electrolyte. The results indicated that the performance of NPMCs prepared with carbon-supported ethylenediamine-transition metal composite precursor and subjected to heat-treatment shows comparable activity for oxygen reduction with Pt/C catalyst. The NPMC exhibits an open circuit potential of 0.97 V and a maximum power density of 177 mW cm−2 at 50 °C when tested in anion exchange membrane (AEM) fuel cells.  相似文献   

13.
In the present paper, a ten 10 cm2 direct ethylene glycol fuel-cell (DEGFC) stack based on a nanoporous proton-conducting membrane (NP-PCM) is used to study the electro-oxidation of ethylene glycol (EG) in acid medium under initial and steady-state conditions, and under the operating conditions of electrochemical titration. Ethylene glycol (EG) has a theoretical capacity 17% higher than that of methanol in terms of Ah ml−1 (4.8 and 4, respectively); this is especially important for portable electronic applications. EG (bp 198 °C) is also a safer fuel for direct-oxidation fuel-cell (DOFC) applications than is methanol. A maximal power of 12 W (at 0.3 V cell−1) at 80 °C has been achieved for a DEGFC fresh stack fed with 0.5 M EG/1.7 M triflic acid solution at ambient dry air pressure. The formation of oxidation by-products – glycolic and oxalic acids (most likely in parallel reactions) – has been proven by ion-chromatography analysis. On continuous feed of EG in order to maintain a concentration of about 0.5 M, the concentration of intermediates reached a maximum after about two fuel (EG) turnovers. After discharging without feeding the stack with EG, there was no further accumulation of these acids and their concentration decreased to almost zero. This is clear evidence that EG is a real fuel that can be converted completely to CO2.  相似文献   

14.
This work describes miniature formic acid fuel cell batteries, which are built based on a Nafion® membrane and thin metal foils. The intrinsic advantages of formic acid fuel allow for a very simple design of the fuel cell, and the volume of the complete system, including fuel reservoir, can be as small as 11 mm3. This work examines the effect of membrane thicknesses and fuel concentrations on the cell performance. The optimized cell performance is obtained with N117 membrane and 12 M fuel. Peak power density of the optimized cell is 112 mW cm−2. Life tests are conducted at various conditions using 6 μL of fuel. An energy density of 70 Wh L−1 with 40% fuel utilization rate is observed when 12 M formic acid is used at 0.5 V.  相似文献   

15.
This paper presents the development of a novel liquid-based microscale fuel cell using non-noble catalysts in an alkaline solution. The developed fuel cell is based on a membraneless structure. The operational complications of a proton exchange membrane lead the development of a fuel cell with the membraneless structure. Non-noble metals with relatively mild catalytic activity, nickel hydroxide and silver oxide, were employed as anode and cathode catalysts to minimize the effect of cross-reactions with the membraneless structure. Along with nickel hydroxide and silver oxide, methanol and hydrogen peroxide were used as a fuel at anode and an oxidant at cathode. With a fuel mixture flow rate of 200 μl min−1, a maximum output power density of 28.73 μW cm−2 was achieved. The developed fuel cell features no proton exchange membrane, inexpensive catalysts, and simple planar structure, which enables high design flexibility and easy integration of the microscale fuel cell into actual microfluidic systems and portable applications.  相似文献   

16.
Direct-oxidation fuel cells (DOFC) are promising electrochemical devices for various applications. In addition to methanol (MeOH), alternative fuels are being tested in a search for lower toxicity, safer handling, and higher energy density. Ethylene glycol (EG) was employed as one of such fuels. However, DOFCs face several problems, such as fuel crossover through the membrane during its operation. This not only lowers the cell potential but also poisons the catalyst for the oxygen-reduction reaction (ORR). Experiments were performed on the poisoning of Pt and Pt-alloy ORR catalysts (both commercial and homemade, by electroless deposition), by fuels and their oxidation by-products. At 25 °C, methanol poisoning was found to be reversible and the catalytic activity measured afterwards in a fuel-free solution and the electrochemical surface area (ECSA) were enhanced. The effect of poisoning by methanol and ethylene glycol and their oxidation intermediates is reported here for the first time. The severity of poisoning was found to be MeOH ? formaldehyde < formic acid. In solutions of EG and its oxidation by-products, the poisoning order was EG ≤ glycolic acid < oxalic acid, the poisoning of all three being more severe than that of methanol. The catalysts most resistant both to MeOH and EG poisoning were commercial acid-treated PtCo and homemade PtCoSn. The reasons for the enhanced tolerance were investigated and PtCoSn was found to be the less active both in the methanol and ethylene glycol oxidation processes.  相似文献   

17.
A novel multilayer membrane for the proton exchange membrane fuel cell (PEMFC) was developed. Nafion was dispersed uniformly onto both sides of the sulfonated polyimide (SPI) membrane. The Nafion/SPI/Nafion composite membrane was prepared by immersing the SPI into the Nafion-containing casting solution. Through immersing both membranes into the Fenton solution at 80 °C for 0.5 h for an accelerated ex situ test, chromatographic analysis of the water evacuated from the cathode and the anode of the cells and a durability test of a single proton exchange membrane fuel cells, it was proved that the stability of the composite membrane has been greatly improved by adding the Nafion layer compared with the SPI membrane. The fuel cell performance with the SPI and Nafion/SPI/Nafion membranes was similar to the performance with the commercial product Nafion® NRE-212 membrane at 80 °C.  相似文献   

18.
A new fuel cell stack design is described using an anion exchange membrane (AEM) fuel cell and a proton exchange membrane (PEM) fuel cell in series with a single fuel tank servicing both anodes in a passive direct methanol fuel cell configuration. The anionic-cationic bi-cell stack has alkaline and acid fuel cells in series (twice the voltage), one fuel tank, and simplified water management. The series connection between the two cells involves shorting the cathode of the anionic cell to the anode of the acidic cell. It is shown that these two electrodes are at essentially the same potential which avoids an undesired potential difference and resulting loss in current between the two electrodes. Further, the complimentary direction of water transport in the two kinds of fuel cells simplifies water management at both the anodes and cathodes. The effect of ionomer content on the AEM electrode potential and the activity of methanol oxidation were investigated. The individual performance of AEM and PEM fuel cells were evaluated. The effect of ion-exchange capacity in the alkaline electrodes was studied. A fuel wicking material in the methanol fuel tank was used to provide orientation-independent operation. The open circuit potential of the bi-cell was 1.36 V with 2.0 M methanol fuel and air at room temperature.  相似文献   

19.
A new poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) composite polymer membrane was synthesized using a solution casting method. Alkaline direct borohydride fuel cells (DBFCs), consisting of an air cathode based on MnO2/C inks on Ni-foam, anodes based on PtRu black and Au catalysts on Ni-foam, and the PVA/HAP composite polymer membrane, were assembled and investigated for the first time. It was demonstrated that the alkaline direct borohydride fuel cell comprised of this low-cost PVA/HAP composite polymer membrane showed good electrochemical performance. As a result, the maximum power density of the alkaline DBFC based on the PtRu anode (45 mW cm−2) proved higher than that of the DBFC based on the Au anode (33 mW cm−2) in a 4 M KOH + 1 M KBH4 solution at ambient conditions. This novel PVA/HAP composite polymer electrolyte membrane with high ionic conductivity at the order of 10−2 S cm−1 has great potential for alkaline DBFC applications.  相似文献   

20.
The carbon supported Au nanoparticles (Au-NPs) catalyst with a small average size (3.5 nm) and narrow size distribution (2–6 nm) was synthesized by a solution phase-based nanocapsule method. The reactivity of glycerol oxidation on Au/C is much higher than that of methanol and ethylene glycol oxidations in alkaline electrolyte. The anion-exchange membrane-direct glycerol fuel cell (AEM-DGFC) with the Au/C anode catalyst and a Fe-based cathode catalyst shows high performances with both high-purity glycerol and crude glycerol fuel: the open circuit voltages (OCVs) are 0.67 and 0.66 V, and peak power densities are 57.9 and 30.7 mW cm−2 at 80 °C, respectively. Fed with crude glycerol, the Au/C anode catalyst-based AEM-DGFC also demonstrates high performance stability at 80 °C. The product analysis shows that the electrooxidation of glycerol on the Au/C anode catalyst in AEM-DGFCs favors production of deeper-oxidized chemicals: tartronic acid, mesoxalic acid and oxalic acid, which leads to higher fuel cell's Faradic efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号