首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Photocatalytic hydrogen production using solar irradiation is the best solution for existing energy crisis and ecological issues. Various efforts have been made to design a stable, proficient and visible light driven photocatalyst for hydrogen generation. It has been revealed that numerous factors e.g., surface area, morphology, band structure, charge transference and crystallinity affect the solar to hydrogen conversion ability of photocatalyst. Currently, many modification strategies including anion/cation doping, composite formation and alloy fabrication have been advised for semiconductor catalysts to harvest solar light to maximum extent. Moreover, a progression of novel engineering techniques that introduces dye sensitizers, quantum dots and co-catalysts, seems to enhance the photocatalytic efficiency for hydrogen production. In this perspective, we present a summary of various factors that can enhance the effectiveness of hydrogen generation and outline current advancement of frequently used fabricating strategies that look for greater yield of hydrogen. Lastly, emergence of surface plasmon resonance and significance of photocatalyst recycling for hydrogen generation is discussed. It is expected that this perspective will help researchers in designing an efficient photocatalyst for industrial scale hydrogen production.  相似文献   

2.
Hydrogen is considered today a promising environmental friendly energy carrier for the next future, since it produces no air pollutants or greenhouse gases when it burns in air, and it possesses high energy capacity. In the last decades great attention has been devoted to hydrogen production from water splitting by photocatalysis. This technology appears very attractive thanks to the possibility to work under mild conditions producing no harmful by-products with the possibility to use renewable solar energy. Besides, it can be combined with the technology of membrane separations making the so-called photocatalytic membrane reactors (PMRs) where the chemical reaction, the recovery of the photocatalyst and the separation of products and/or intermediates simultaneously occur. In this work the basic principles of photocatalytic hydrogen generation from water splitting are reported, giving particular attention on the use of modified photocatalysts able to work under visible light irradiation. Several devices to achieve the photocatalytic hydrogen generation are presented focusing on the possibility to obtain pure hydrogen employing membrane systems and visible light irradiation. Although many efforts are still necessary to improve the performance of the process, membrane photoreactors seem to be promising for hydrogen production by overall water splitting in a cost-effective and environmentally sustainable way.  相似文献   

3.
This perspective provides an insight to the possibility of adopting hydrogen as a key energy-carrier and fuel source, through Photocatalytic water splitting in the near future. The need of green and clean energy is increasing to overcome the growing demand of sustainable energy throughout globe, owing to CO2 emission using fossil fuels. To generate highly efficient and cost-competitive hydrogen, the semiconductor based heterojunction nanomaterials have gained tremendous consideration as a promising way. Currently, the efficiency for hydrogen generation through UV–Vis active photocatalysts is relatively low. The key issues are found to be poor separation of photogenerated electron/hole, less surface area, and low absorption region of electromagnetic spectrum. Such issues arise due to inappropriate band edge potentials and large bandgap of present catalyst. A lot of schemes has been devoted to design and fabricate efficient photocatalysts for improved photocatalytic performance in recent years. However, it seems still a challenge and imperative to greatly comprehend the fundamental aspects, photocatalysis and transfer mechanisms for complete deployment of electron/hole pairs. Further, to produce hydrogen to a larger extent through photocatalytic water splitting, the photocatalyst has been modified through co-catalysts/dopants using numerous techniques including the Z-scheme, hybridization, crystallinity, morphology, tuning of band edge positions, reduction of the band gap, surface structure etc., such that these heterogeneous photocatalysts may have ability to absorb enough light in the UV-VIS-IR region. This type of heterogeneous photocatalysts has the ability to improve the rate of efficiency for hydrogen evolution through absorption of sufficient light of solar spectrum and enhance the separation of charge-carriers by inhibiting recombination of electron/hole pairs. We surmise that taking into account the aforesaid factors should support in scheming an efficient photocatalysts for hydrogen production through water splitting, eventually prompting technological developments in this field.  相似文献   

4.
This paper examines photocatalytic hydrogen production as a clean energy solution to address challenges of climate change and environmental sustainability. Advantages and disadvantages of various hydrogen production methods, with a particular emphasis on photocatalytic hydrogen production, are discussed in this paper. Social, environmental and economic aspects are taken into account while assessing selected production methods and types of photocatalysts. In the first part of this paper, various hydrogen production options are introduced and comparatively assessed. Then, solar‐based hydrogen production options are examined in a more detailed manner along with a comparative performance assessment. Next, photocatalytic hydrogen production options are introduced, photocatalysis mechanisms and principles are discussed and the main groups of photocatalysts, namely titanium oxide, cadmium sulfide, zinc oxide/sulfide and other metal oxide‐based photocatalyst groups, are introduced. After discussing recycling issues of photocatalysts, a comparative performance assessment is conducted based on hydrogen production processes (both per mass and surface area of photocatalysts), band gaps and quantum yields. The results show that among individual photocatalysts, on average, Au–CdS has the best performance when band gap, quantum yield and hydrogen production rates are considered. From this perspective, TiO2–ZnO has the poorest performance. Among the photocatalyst groups, cadmium sulfides have the best average performance, while other metal oxides show the poorest rankings, on average. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Photocatalytic hydrogen production has been considered as one of the most promising alternatives for providing clean, sustainable, and renewable energy sources. Tremendous investigation and efforts have been devoted to increase the efficiency of the solar to energy conversion of a photocatalyst. Layered double hydroxide (LDH) received scientific attention for its excellent compositional flexibility and controllable morphology, leading to the facile incorporation of the metal species into their layered structure. The unique multi-structure and the tunability of its band gap make LDH more prominent in the field of photocatalysis. This article highlights the recent developments in the fabrication of LDH-based photocatalyst nanocomposites and the engineering approaches for augmenting their photocatalytic hydrogen production efficiency. The thermodynamics and challenges in photocatalytic water splitting are deliberated to understand the pathways to construct efficient semiconductor photocatalysis system. The efficiency enhancement of LDH-based photocatalysts are comprehensively discussed by giving special attention to the heterojunction engineering of type I, type II, p-n junction, Z-scheme, S-scheme, and R-scheme. Fabrication of the hybrid LDH nanocomposites through band gap engineering and metal loading are summarised. The architectural and morphological tuning of LDH-based composite through the construction of the novel core-shell structure and layer-by-layer nanosheets are also demonstrated. Finally, the future recommendations are outlined to provide insights for their development in the photocatalysis field.  相似文献   

6.
Photocatalytic water splitting for hydrogen production is a promising technology for the conversion of solar light to clean energy. In this perspective, several semiconductors have been under investigation, but they show less efficiency, selectivity and stability for hydrogen production. Recently, perovskites are most demanding due to their exceptional characteristics such as controlled structure and morphology, adjustable band structure, controlled valence state, adjustable oxidation state and visible light response. This review highlights structural classification of perovskites and band engineering for solar energy assisted photocatalytic hydrogen production. In the main stream, overview and fundamentals of perovskite materials for selective solar to hydrogen conversion are presented. The structural modification and band alteration to stimulate quantum efficiency and stability are specifically demonstrated. Photoactivity enhancement through metals, noble metals, non-metals doping, oxygen vacancies and fermi level adjustments are also deliberated. The role of perovskites with binary semiconductors towards hydrogen production has also been discussed. Up conversion effect of doping luminescent agents (Er, Ho, Eu, Nd) for improved photocatalytic activity by band gap narrowing is also deliberated. Various conventional and non-conventional synthesis methods for perovskites including solid-state, hydrothermal, sol-gel, co-precipitation, spray-freeze drying, microwave assisted, spray pyrolysis, low temperature combustion, pulse laser deposition and wet chemical method for enhanced photocatalytic activity are also demonstrated in this work. Finally, the key challenges and future directions for sustainable energy systems are also included.  相似文献   

7.
The rate of hydrogen evolution from a photocatalytic process depends not only on the activity of a photocatalyst, but also on photoreactor design. Ideally, a photoreactor should be able to absorb the incident light, promoting photocatalytic reactions in an effective manner with minimal photonic losses. There are numerous technical challenges and cost related issues when designing a large-scale photoreactor for hydrogen production. Active stirring of the photocatalyst slurry within a photoreactor is not practical in large-scale applications due to cost related issues. Rather, the design should allow facile self-mixing of the flow field within the photoreactor. In this paper two types of photocatalytic reactor configurations are studied: a batch type design and another involving passive self-mixing of the photolyte. Results show that energy loss from a properly designed photoreactor is mainly due to reflection losses from the photoreactor window. We describe the interplay between the reaction and the photoreactor design parameters as well as effects on the rate of hydrogen evolution. We found that a passive self-mixing of the photolyte is possible. Furthermore, the use of certain engineering polymer films as photoreactor window materials has the potential for substantial cost savings in large-scale applications, with minimal reduction of photon energy utilization efficiency. Eight window materials were tested and the results indicate that Aclar™ polymer film used as the photoreactor window provides a substantial cost saving over other engineering polymers, especially with respect to fused silica glass at modest hydrogen evolution rates.  相似文献   

8.
In despite of so many types of solar reactors designed for solar detoxification purposes, few attempts have been made for photocatalytic hydrogen production, which in our option, is one of the most promising approaches for solar to chemical energy conversion. Addressing both the similarity and dissimilarity for these two processes and by fully considering the special requirements for the latter reaction, a Compound Parabolic Concentrator (CPC) based photocatalytic hydrogen production solar reactor has been designed for the first time. The design and optimization of this CPC based solar reactor has been discussed in detail. Preliminary results demonstrated that efficient photocatalytic hydrogen production under direct solar light can be accomplished by coupling tubular reactors with CPC concentrators. It is anticipated that this first demonstration of concentrator-based solar photocatalytic hydrogen production would draw attention for further studies in this promising direction.  相似文献   

9.
围绕太阳能制氢技术展开论述,首先,介绍太阳能制氢技术的研究现状;其次,对于太阳能制氢技术尤其是光催化制氢技术及热化学循环分解水制氢技术,分别从技术原理、关键材料、技术难点等方面进行详细的论述;最后,对太阳能制氢技术研究给出结论及建议,旨在为未来太阳能制氢技术的研发布局和产业技术突破提供参考和思路。  相似文献   

10.
Solar-driven photocatalytic hydrogen generation by splitting water molecules requires an efficient visible light active photocatalyst. This work reports an improved hydrogen evolution activity of visible light active TiO2-x photocatalyst by introducing reduced graphene oxide via an eco-friendly and cost-effective hydrothermal method. This process facilitates graphene oxide reduction and incorporates intrinsic defects in TiO2 lattice at a one-pot reaction process. The characteristic studies reveal that RGO/TiO2-x nanocomposites were sufficiently durable and efficient for photocatalytic hydrogen generation under the visible light spectrum. The altered band gap of TiO2-x rationally promotes the visible light absorption, and the RGO sheets present in the composites suppresses the electron-hole recombination, which accelerates the charge transfer. Hence, the noble metal-free RGO/TiO2-x photocatalyst exhibited hydrogen production with a rate of 13.6 mmol h?1g?1cat. under solar illumination. The appreciable photocatalytic hydrogen generation activity of 947.2 μmol h?1g?1cat with 117 μAcm?2 photocurrent density was observed under visible light (>450 nm).  相似文献   

11.
In this work, a dye/TiO2 system for hydrogen generation via the reduction of water has been investigated. The use of simple and template free synthesis process for hierarchical porous architecture of TiO2 (HPT) with a panchromatic Zinc-porphyrin (LG5) sensitizer has been identified as the potential material in photoinduced hydrogen production. The effect of the dye absorbed by the Pt-HPT has been tested for the hydrogen production under visible light irradiation in presence of triethanolamine (TEOA) or Glycerol (Gly) as sacrificial electron donor (SED). The enhanced activity and effective charge transfer from the dye to the TiO2 molecule is significant in the PHPT-LG5 composite. The PHPT-LG5 catalyst exhibited higher photocatalytic activity of 4196 μmol g−1 h−1 with an impressive turnover numbers (TON) of 8392 and apparent quantum yield (AQY) of 7.43% of light irradiation using 450 W Xe lamp when compared to the corresponding simple semiconductor as well as the N719 dye loaded catalysts. The acrylic group present in the dye molecule helps in binding the semiconductor with the dye molecule and leads to superior photocatalytic activity. The diffuse reflectance spectroscopy (DRS), and computational studies of the dye molecule and the composite suggests the better photocatalytic performance of the composite. The Fourier Transform Infra-Red Spectroscopy (FTIR) studies reveals the strong attachment of the dye molecule with the semiconductor hierarchical porous TiO2 (HPT) results in the enhancement in hydrogen production, the stability tests of the photocatalyst shows higher reproducibility at neutral pH in TEOA. A systematic study of LG5 with sacrificial electron donors and pH were performed and are correlated with the photocatalytic activity of N719 dye. The presence of the cyanoacrylic group as an anchoring group in the LG5 leads to red shift in S and Q bands suggesting the efficient intramolecular charge transfer behavior (CT) and possess strategies for broadening the light harvesting properties. The present work opens up a new window toward solar energy conversion with extended light harvesting capacity and enhanced photocatalytic activity.  相似文献   

12.
The economic, social, and environmental aspects are important that should be notable before the selection of a method for the production of energy. Various renewable energy sources are used like hydropower, biomass, biofuel, geothermal energy, and wind energy for the production of sustainable energy that are excellent approaches to fulfill energy environmental energy demands. Renewable sources of energy give an excellent chance to extenuate the gas emission in greenhouse and reduction of global warming with the help of renewable sources of energy. The importance and utilization of the variety of renewable sources of energy are elaborated in this article. The emerging and exploring technique for the production of energy is the photocatalysis. In photocatalysis, solar spectrum is the extraneous source that is used with water to produce hydrogen energy (green energy) by the water splitting under the shower of the solar spectrum. The solar spectrum contains heat and intensity of light from which light spectrum is the abundantly used for the splitting of water. The photocatalyst is the key factor to initiate the reaction depending upon the energy band gap by absorbing the energy from the spectrum of the sun. Semiconducting materials having lower forbidden energy band gap are the basic requirements to use them as a photocatalyst for photocatalysis. Copper vanadate and their composites are the promising materials that are used as photocatalyst for the production of hydrogen energy. Copper vanadate is the focusing material that can be used as photocatalyst. It is an n‐type semiconducting material with 2 eV indirect energy band gap having monoclinic structural phase which is tuned by the doping of metals like chromium, molybdenum, and silver to reduce the grain size and energy band gap and increase the surface area and optical absorption of solar light only to enhance the photocatalytic performance towards the production of hydrogen energy by water splitting in the presence of solar light.  相似文献   

13.
In the present study, CeO2 loaded porous alkali-activated steel slag-based photocatalyst (CeO2-PASSP) as a new catalyst for photocatalytic water-splitting of hydrogen production was prepared via impregnation method. The BET result showed that adding pore-forming agent changed the pore structure of the alkali-activated steel slag-based binding material and the mesoporous volume of photocatalyst carrier increased by 70%. The XRD, TEM and HRTEM results indicated that calcium silicate hydrate was mainly mineral phase in the alkali-activated steel slag-based binding material. CeO2 nanoparticles with particle size about 10 nm were highly dispersed on the surface of photocatalyst carrier. The photocatalyst loaded 8 wt% CeO2 showed the weakest photoluminescence intensity. 8CeO2-PASSP sample exhibited the highest photocatalytic hydrogen production activity (68.64 mmol/g) and hydrogen generation rate (13.73 mmol/(g?h)) in the simulated solar light irradiation for 5 h, and was quite stable after exposure to photocatalytic hydrogen production for a long time. The excellent activity of hydrogen production for 8CeO2-PASSP specimen was ascribed to the co-action of the high SBET, large mesoporous volume and the active components of the CeO2 and FeO existed in photocatalyst carrier.  相似文献   

14.
Converting solar energy into hydrogen (H2) by photocatalytic water splitting is a promising approach to simultaneously address the increasing energy demand and environmental issues. Half decade has passed since the discovery of photo-induced water splitting phenomenon on TiO2 photoanode, while the solar to H2 efficiency is still around 1%, far below the least industrial requirement. Therefore, developing efficient photocatalyst with a high energy conversion efficiency is still one of the main tasks to be overcome. Graphitic carbon nitride (g-C3N4) is just such an emerging and potential semiconductor. Therefore, in this review, the state-of-the-art advances in g-C3N4 based photocatalysts for overall water splitting were summarized in three sections according to the strategies used, and future challenges and new directions were discussed.  相似文献   

15.
Hydrogen is an attractive alternative to fossil fuels that addresses several environmental and energy shortage issues. Nano-sized TiO2-based photocatalysts with unique structural and functional properties are the most extensively studied photocatalytic nanomaterials for hydrogen production and pollutant degradation. However, titania is hampered by a wide band gap, low utilization of solar light and a rapid recombination of electron/hole pairs. These issues limit its photocatalytic performance. In this review, we present the latest developments in the fabrication of different higher dimensional TiO2 nanostructured materials that aim to address these inherent limitations to an otherwise very promising material. Specifically, we will look into critical engineering strategies to enlarge the active surface area, enhance visible light absorption and suppress the recombination of electrons/holes that benefit their photo/photoelectric-catalytic water splitting activity. Finally, the current challenges and perspectives for TiO2 nanostructures are also discussed. Continuous efforts are necessary to endow TiO2-based materials with novel advanced functionality and commercialization potential in the coming years.  相似文献   

16.
Easy synthesis of graphene based composite photocatalyst with the incorporation of minimal quantity of noble metals for the enhanced photocatalytic hydrogen evolution as well as photocatalytic degradation and mineralization of recalcitrant pollutants under solar irradiation is an urgent requirement from the clean energy and environment point of view all over the globe. Herein, we demonstrate the decoration of Pt by photodeposition method on the hydrothermally synthesized RGO-TiO2 nanocomposite. The various photocatalysts synthesized were successfully characterized by XRD, FTIR, Raman, UV–visible absorption spectra, XPS, SEM and TEM techniques. The well characterized photocatalysts were further investigated for the photocatalytic hydrogen evolution studies of methanol water mixtures under UV as well as simulated solar light irradiation. The optimized Pt-RGO-TiO2 (1 wt % Pt and 10 wt % RGO) composite was found to show 14 fold increase in the photocatalytic hydrogen evolution efficiency under UV light irradiation and 20 fold increase under simulated solar light irradiation as compared to bare TiO2 under UV light irradiation. The ternary photocatalyst showed very good recycle and reuse capability up to 4 cycles. The optimized Pt-RGO-TiO2 was further tested for the enhanced photocatalytic degradation and mineralization of pharmaceutical pollutant namely β blocker Propranolol under UV as well as simulated solar light irradiation. The obtained results showed 79% and 94% reduction in COD of Propranolol under UV and simulated solar light irradiation respectively. The appreciable enhancement in the photocatalytic activity of the Pt decorated RGO-TiO2 photocatalyst as compared to bare TiO2 under UV and simulated solar light can be attributed to the use of maximum range of solar spectrum along with their excellent properties of charge separation by RGO and Pt.  相似文献   

17.
Photocatalytic water splitting into gaseous hydrogen and oxygen in the presence of semiconductor photocatalysts under a visible spectrum of solar irradiation is one of the most promising processes for plummeting energy demands and environmental pollution. Among the successful photocatalytic materials, the core/shell nanostructures show promising results owing to their fascinating morphology that protects the surface features of the core besides the effective separation of photo-excitons resulting in an enhanced rate of hydrogen production up to 162 mmol h−1g−1cat, which is a notable highest value reported in the literature. In this review, we have focused on the basic characteristics of the core-shell structure-based semiconductor photocatalytic systems and their efficient water-splitting reactions under light irradiation. Comprehensive detail on various synthesis methods of core-shell nanostructures, shell thickness-dependent properties, charge-transfer reaction mechanisms, and photocatalytic stability are highlighted in this review. Core-shell nanostructured materials have been extensively used as a photocatalyst, co-catalyst, and by coupling with supporting materials to improve the apparent quantum efficiency up to 45.6%. Besides, important photocatalytic properties that influence the redox reactions i.e., effective exciton separation, the effect of different light sources/wavelengths, surface charge modeling, photocatalytic active sites, and turnover frequency (TOF) have also been focused on and extensively described. Finally, the present and future prospects of the core-shell nanostructured photocatalysts for solar energy conversion into green hydrogen production have been expounded.  相似文献   

18.
Photocatalytic hydrogen evolution from water is one of the top issues to achieve green hydrogen energy and utilize solar energy. Construction of cocatalyst is a major part for efficient photocatalysts. Lamellar flower-like CoP@C cocatalyst is synthesized via the phosphating of cobalt precursor derived from metal-organic framework ZIF-67. Different from usual phosphating of ZIF-67 directly, a typical solvothermal treatment of ZIF-67 contributes to tuning the formation of C nanodots on the lamellar CoP. CoP@C as cocatalyst exhibits a remarkable role of improving photocatalytic activity for hydrogen evolution. CoP@C/CdS composite shows a photocatalytic hydrogen evolution rate of 164.4 mmol g?1 h?1, which is much higher than those of pure CdS and other CoP/CdS photocatalysts. The heterojunction and interaction are verified between CoP@C and CdS. Light absorption and photoelectric properties of CoP@C/CdS are enhanced accompanying with strong reduction ability. A type-Ⅱ transfer path of photoelectrons is underway in CoP@C/CdS photocatalyst, accelerating the separation of electron-hole pairs and the transfer of carriers, and further resulting in the promoted photocatalytic performance. This work provides a suitable way to achieve carbon nanodots involved metal compound cocatalysts for efficient hydrogen production.  相似文献   

19.
Solar photocatalytic hydrogen production from water has been regarded as an ideal way addressing world energy and environmental crises. The technology has long relied on the development of an efficient photocatalyst. In addition to its photocatalytic performance, the large-scale production of certain photocatalyst from the viewpoint of particle application remains a challenge yet has received insufficient focus. Herein, we report an efficient and practical batch preparation system based upon hydrothermal method to the scalable production of chalcogenide nanoparticle photocatalyst. Taking the synthesis of Cd0.5Zn0.5S (CZS) twinned photocatalyst as an example, the outcome of CZS photocatalyst could reach ~0.8 kg in this batched synthesis, which is about 390 times of the lab-scale production in mass amount. It was found that the twinned structure and visible-light absorption property were well maintained. Although further measurements toward the photocatalytic activity indicate slight decrement on solar H2 generation compared to the lab-scale synthesized CZS photocatalyst, a high quantum efficiency of about 40.5% at 425 nm remained. The photocatalytic reaction could also stably proceed for 200 h without notable decay of H2-evolution rate. This work thus provides a powerful means for facile scaling up the chalcogenide nanoparticle photocatalyst at the kilogram level with both high quality and good reproducibility.  相似文献   

20.
One of the main limitations of existing solar thermochemical water-splitting cycles (WSC) are that they utilize only thermal component of the solar irradiation neglecting its photonic component. A new hybrid photo-thermochemical sulfur–ammonia (HySA) WSC developed at the Florida Solar Energy Center allows circumventing this shortcoming. In the HySA cycle, water splitting occurs by means of solar beam splitting which enables utilization of the quantum (UV–Vis) portion of the solar spectrum in the hydrogen production stage and the thermal (IR) portion in the oxygen production stage. Present work investigates the photocatalytic hydrogen production step using narrow band gap CdS and CdSZnS composite photocatalysts, and ammonium sulfite as an electron donor. The choice of the electron donor was determined by the considerations of its regenerability in the thermal stages of the HySA cycle. This article examines the impact of photocatalyst and cocatalyst loading, temperature, and light intensity on hydrogen production rates. Photocatalysts, cocatalysts and photoreaction products were analyzed by a number of materials characterization (XRD, SEM, TEM, EDS) and analytical (GC and IC) methods. The experimental data obtained provide guidance for the improved solar photoreactor design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号