首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni (2.5 wt%) and Co (2.5 wt%) supported over ZrO2/Al2O3 were prepared by following a hydrolytic co-precipitation method. The synthesized catalysts were further promoted by Rh incorporation (0.01–1.00 wt%) and tested for their catalytic performance for dry CO2 reforming, combined steam–CO2 reforming and oxy–CO2 reforming of methane for production of syngas. The catalysts were characterized by using N2 physical adsorption, XRD, H2–TPR, SEM, CO2–TPD, NH3–TPD, TEM and TGA. The results revealed that ZrO2 phase was in crystalline form in the catalysts along with amorphous Al oxides. Ni and Co were confirmed to be in their respective spinel phases that were reducible to metallic form at 800 °C under H2. Ni and Co were well dispersed with their nano-crystalline nature. The catalyst with 0.2% loading of Rh showed superior performance in the studied reactions for reforming of methane. This catalyst also showed good coke resistance ability for dry CO2 reforming reaction with 3.8 wt% of carbon formation during the reaction as compared to 11.6 wt% carbon formation over the catalyst without Rh. The catalyst performance was stable throughout the reaction time for CH4 conversions, irrespective of carbon formation with slight decline (~1%) in CO2 conversion. For dry CO2 reforming reaction, this catalyst showed good conversion for both CH4 and CO2 (67.6% and 71.8% respectively) with a H2/CO ratio of 0.84, while for the Oxy-CO2 reforming reaction, the activity was superior with CH4 and CO2 conversions (73.7% and 83.8% respectively) and H2/CO ratio of 1.05.  相似文献   

2.
The partial dehydrogenation of fuels like diesel or kerosene cuts to produce H2 is an emerging idea of increasing interest. In the present work the study of the partial dehydrogenation of Jet A-1 fuel on Pt-Sn/γ-Al2O3 based catalysts to produce H2 to feed an on-board (aircraft) proton exchange membrane fuel cell is presented. Extensive physico-chemical characterization of 5% wt.Pt-1% wt.Sn/γ-Al2O3 and 5%wt.Pt-1%wt.Sn-1%wt.Na/γ-Al2O3 pelleted materials has been performed. A gradient of the active metals from the edge to the centre of the pellet has been observed. A higher concentration of Pt0 has been detected on the outer part of the pellet than in the inner part, whereas Sn has been detected only on the external part of the pellet. The investigated materials are active as catalysts for the partial dehydrogenation of normal and desulfurised Jet A-1 kerosene fuel. The presence of sulfur compounds and coke deposition strongly affects the H2 productivity which decreases rapidly with time on stream. The presence of a Na cation addition contributes to give the highest and most sustained H2 production. The condensed outlet liquid stream retains the fuel properties in the range of the Jet A-1 kerosene fuel. These are encouraging preliminary results, inviting further research; coking and sulfur poisoning as well as identification of appropriate reaction conditions are the main challenges to be overcome in the immediate future.  相似文献   

3.
Nickel catalysts supported on the K2TixOy–Al2O3 were prepared by the wet impregnation method for steam methane reforming to produce hydrogen. X-ray diffraction, N2 physisorption, scanning electron microscopy with energy dispersive spectroscopy, the H2 temperature-programed reduction technique, and X-ray photoelectron spectroscopy were employed for the characterization of catalyst samples. The results revealed that the performance of the Ni/K2TixOy–Al2O3 catalysts was comparable to that of commercial FCR-4 for steam methane reforming under the mild condition. In particular, a catalytic stability test at 800 °C and in the reactant flow with the steam-to-carbon (S/C) feed ratio of 1.0 indicated that the Ni/K2TixOy–Al2O3 catalysts were more active, thermally stable and resistant to deactivation than the non-promoted Ni/Al2O3. It is considered that the appropriate interaction strength between nickel and the modified support and proper K2TixOy phases with a surface monolayer coverage achieved at ca. 15 wt.% loading in the support play important roles in promoting the steam methane reforming activity as well as suppressing the sintering of the catalyst.  相似文献   

4.
A series of 30 wt%Ni/CexZr1?xO2 catalysts doped with Ru ranging from 0 to 5 wt% were prepared by one-pot hydrolysis of metal nitrates with ammonium carbonate for carbon dioxide methanation at low temperature range of 150–310 °C. The influences of Ce/Zr molar ratios and Ru contents on the physicochemical properties and catalytic activities of prepared catalysts were systematically investigated. The addition Ru can improve the Ni dispersion and the basicity of the yRu-30Ni/Ce0.9Zr0.1O2 catalysts surface. As a result, their low-temperature catalytic activity had been enhanced over these doped Ru promoted catalysts. The optimal catalyst was 3Ru-30Ni/Ce0.9Zr0.1O2 on which the CO2 conversion reached theoretical equilibrium value as high as 98.2% with the methane selectivity of 100% at a reaction temperature as low as 230 °C. Moreover, there was almost no deactivation for the 3Ru-30Ni/Ce0.9Zr0.1O2 catalyst during 300 h at 230 °C indicating excellent catalytic stability and coke resistence ability. It was also found that the low-temperature activity of 3Ru-30Ni/Ce0.9Zr0.1O2 catalyst prepared by one-pot hydrolysis method was much higher than the one prepared by impregnation method.  相似文献   

5.
In this study, methane and methanol steam reforming reactions over commercial Ni/Al2O3, commercial Cu/ZnO/Al2O3 and prepared Ni–Cu/Al2O3 catalysts were investigated. Methane and methanol steam reforming reactions catalysts were characterized using various techniques. The results of characterization showed that Cu particles increase the active particle size of Ni (19.3 nm) in Ni–Cu/Al2O3 catalyst with respect to the commercial Ni/Al2O3 (17.9). On the other hand, Ni improves Cu dispersion in the same catalyst (1.74%) in comparison with commercial Cu/ZnO/Al2O3 (0.21%). A comprehensive comparison between these two fuels is established in terms of reaction conditions, fuel conversion, H2 selectivity, CO2 and CO selectivity. The prepared catalyst showed low selectivity for CO in both fuels and it was more selective to H2, with H2 selectivities of 99% in methane and 89% in methanol reforming reactions. A significant objective is to develop catalysts which can operate at lower temperatures and resist deactivation. Methanol steam reforming is carried out at a much lower temperature than methane steam reforming in prepared and commercial catalyst (275–325 °C). However, methane steam reforming can be carried out at a relatively low temperature on Ni–Cu catalyst (600–650 °C) and at higher temperature in commercial methane reforming catalyst (700–800 °C). Commercial Ni/Al2O3 catalyst resulted in high coke formation (28.3% loss in mass) compared to prepared Ni–Cu/Al2O3 (8.9%) and commercial Cu/ZnO/Al2O3 catalysts (3.5%).  相似文献   

6.
A novel material for hydrogen generation with high capacity of H2 generation has been successfully prepared by ball milling the mixture of Al and home-made fresh Li3AlH6 powder. Its theoretical capacity of hydrogen released is higher than that of pure Al. Results obtained have shown conversion efficiency of Al–Li3AlH6 composite can be close to 100% by increasing the content of Li3AlH6. When the content of Li3AlH6 is 20 wt%, the maximum hydrogen generation rate and hydrogen yield are 2737.6 mL g−1 min−1 and 1513.1 mL g−1, respectively, at room temperature. By XRD, SEM analyses and reaction heat measurements, it demonstrates that the additive Li3AlH6 can provide an additional source of H2 and an alkaline environment (LiOH) as well as additional heat to promote the Al/H2O reaction. Therefore, the Al–Li3AlH6 composite has a very high activity and high capacity of hydrogen released.  相似文献   

7.
8.
Nickel supported γ-alumina (Ni/γ-Al2O3) catalysts are well-known to be highly active on the autothermal reforming of methane, but to be unstable due to coke deposition. Cerium oxide (CeO2) is one of promising promoter to overcome the fast deactivation of nickel-based catalysts by coke formation. Herein, catalytic behavior of CeO2 over Ni/γ-Al2O3 catalysts on the autothermal reforming of methane was investigated. The catalytic activity was maintained for 100 h with H2/CO molar ratio of 1.9. The formation of CeAlO3 is observed at the reduction and reaction conditions. In this work, it was found that the formation of CeAlO3 promoted the catalytic oxidation toward CO2 and prevented the formation of α-Al2O3 and nickel-aluminate, resulting in stable activity for autothermal reforming of methane.  相似文献   

9.
Lanthanum chromites substituted by transition metal are potentially applied as anode catalysts in solid oxide fuel cell fed with fuel gas containing H2S. In order to understand the effect of composition on catalytic activity and sulfur tolerance of anode catalysts, La0.75Sr0.25Cr1−xMnxO3±δ (noted as LSCM, x = 0.2, 0.5, 0.8) series were synthesized and characterized by XRD, XPS and H2-TPR. The results demonstrate that LSCM55 with moderate Mn-substitution content has the highest activity for H2S, which is attributed to considerable reducibility of Mn4+ determined by H2-TPR. XRD patterns reveal that as-synthesized samples with different Mn-substitution contents have different sulfur tolerance. Sr 3d5/2, Cr 2p3/2, Mn 2p3/2 regions of XPS for samples with different Mn-substitution contents imply that dominance of Mn4+, responsible for the catalytic activity, is the consequence of the interactions between cations at A-site and B-site. On the other hand, evolution of Mn in H2S atmosphere indicates Mn3+ in Mn4+-O-Mn3+ clusters contributes greatly to the sulfur tolerance of LSCM. By analyzing consistency in the contents of lattice oxygen, S species (mainly sulfate) and Mn3+, a hypothetical mechanism of LSCM catalysts involving catalysis and sulfur tolerance was proposed.  相似文献   

10.
Global warming due to CO2 emissions has led to the projection of hydrogen as an important fuel for future. A lot of research has been going on to design combustion appliances for hydrogen as fuel. This has necessitated fundamental research on combustion characteristics of hydrogen fuel. In this work, a combination of experiments and computational simulations was employed to study the effects of diluents (CO2, N2, and Ar) on the laminar burning velocity of premixed hydrogen/oxygen flames using the heat flux method. The experiments were conducted to measure laminar burning velocity for a range of equivalence ratios at atmospheric pressure and temperature (300 K) with reactant mixtures containing varying concentrations of CO2, N2, and Ar as diluents. Measured burning velocities were compared with computed results obtained from one-dimensional laminar premixed flame code PREMIX with detailed chemical kinetics and good agreement was obtained. The effectiveness of diluents in reduction of laminar burning velocity for a given diluent concentration is in the increasing order of argon, nitrogen, carbon dioxide. This may be due to increased capabilities either to quench the reaction zone by increased specific heat or due to reduced transport rates. The lean and stoichiometric H2/O2/CO2 flames with 65% CO2 dilution exhibited cellular flame structures. Detailed three-dimensional simulation was performed to understand lean H2/O2/CO2 cellular flame structure and cell count from computed flame matched well with the experimental cellular flame.  相似文献   

11.
Nickel catalysts (10wt.%) supported on MgAl2O4 and γ-Al2O3 were prepared by the wet impregnation method and promoted with various contents of Ce0.75Zr0.25O2. X-ray diffraction (XRD), BET surface area, scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), H2-temperature programmed reduction (TPR) and CO2-temperature programmed desorption (TPD) were employed to observe the characteristics of the prepared catalysts. Ni/γ-Al2O3 and Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 showed better activity in CO2 methane reforming with 75.7(0.93) and 75.4(0.82) CH4 conversions (and H2/CO ratio). H2O was added to feed in the range of H2O/(CH4 + CO2): 0.1–0.5 to suppress reverse water gas shift (RWGS) effect and adjusting H2/CO ratio. The CH4 conversions (and H2/CO) increased to 81(1.1) with 0.5 water/carbon mole ratio in Ni/γ-Al2O3 and 85(1.2) with 0.2 water/carbon mole ratio in Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4. The stability of Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 in the presence and absence of water was investigated. Coke formation and amount in used catalysts were examined by SEM and TGA, respectively. The results showed that the amount of carbon was suppressed and negligible coke formation (less than 3%) was observed in the presence of 0.2 water/carbon mole ratio over Ni/Ce0.75Zr0.25O2 (5wt.%)–MgAl2O4 catalyst.  相似文献   

12.
王珂 《工业加热》2023,(9):39-41+51
在目前煤炭依然作为能源主体的背景下,控制燃煤污染物排放有着重要意义。基于CFD数值模拟,建立伴流燃烧器模型,控制燃料、氧化剂入口流量恒定,设计了O2/CO2、O2/N2氧化剂氛围中O2浓度在21%~40%内的多种工况,对煤粉燃烧特性及燃烧产生的污染物进行了研究。分析了不同工况下煤粉燃烧的温度分布、燃烧速率、碳烟、NOx的生成情况。结果显示,在O2/CO2、O2/N2两种氧化剂氛围中,随着O2浓度的上升,煤粉燃烧温度升高、燃烧速率增大,碳烟生成量均增加,同等O2浓度条件下,O2/CO2氛围的煤粉燃烧温度和燃烧速率均高于O2/N2氛围,碳烟生成量小于O2/N2氛围,且O2/CO2...  相似文献   

13.
Oxidative steam reforming of ethanol at low oxygen to ethanol ratios was investigated over nickel catalysts on Al2O3 supports that were either unpromoted or promoted with CeO2, ZrO2 and CeO2–ZrO2. The promoted catalysts showed greater activity and a higher hydrogen yield than the unpromoted catalyst. The characterization of the Ni-based catalysts promoted with CeO2 and/or ZrO2 showed that the variations induced in the Al2O3 by the addition of CeO2 and/or ZrO2 alter the catalyst's properties by enhancing Ni dispersion and reducing Ni particle size. The promoters, especially CeO2–ZrO2, improved catalytic activity by increasing the H2 yield and the CO2/CO and the H2/CO values while decreasing coke formation. This results from the addition of ZrO2 into CeO2. This promoter highlights the advantages of oxygen storage capacity and of mobile oxygen vacancies that increase the number of surface oxygen species. The addition of oxygen facilitates the reaction by regenerating the surface oxygenation of the promoters and by oxidizing surface carbon species and carbon-containing products.  相似文献   

14.
15.
16.
Molybdenum disulfide (MoS2) and graphitic carbon nitride (g-C3N4) composite photocatalysts were prepared via a facile impregnation method. The physical and photophysical properties of the MoS2–g-C3N4 composite photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microcopy (HRTEM), ultraviolet–visible diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopy. The photoelectrochemical (PEC) measurements were tested via several on–off cycles under visible light irradiation. The photocatalytic hydrogen evolution experiments indicate that the MoS2 co-catalysts can efficiently promote the separation of photogenerated charge carriers in g-C3N4, and consequently enhance the H2 evolution activity. The 0.5wt% MoS2–g-C3N4 sample shows the highest catalytic activity, and the corresponding H2 evolution rate is 23.10 μmol h−1, which is enhanced by 11.3 times compared to the unmodified g-C3N4. A possible photocatalytic mechanism of MoS2 co-catalysts on the improvement of visible light photocatalytic performance of g-C3N4 is proposed and supported by PL and PEC results.  相似文献   

17.
对Li2CO3/Na2CO3/K2CO3及其二元和三元混合熔融盐的密度、比热容、黏度、热导率进行分子动力学模拟(MD),对比得出模拟结果与现有的实验数据和模拟值相近。结果表明:随着温度的升高,密度逐渐减小,离子之间的距离增加,导致对剪切应力的抵抗力变小,这说明单组分、二元和三元熔融盐黏度的负温度依赖性。对于熔融盐的热导率,单组分和二元熔融盐也呈现出负温度依赖性,而三元熔融盐趋势是随温度的升高呈上升状态。  相似文献   

18.
The dry and oxidative dry reforming of CH4 over alumina-supported Co–Ni catalysts were investigated over 72-h longevity experiments. The deactivation behaviour at low CO2:CH4 ratio (≤2) suggests that carbon deposition proceeds via a rapid dehydropolymerisation step resulting in the blockage of active sites and loss in CO2 consumption. In particular, at high temperatures of 923 K and 973 K, a ‘breakthrough’ point was observed in which deactivation that was previously slow suddenly accelerated, indicating rapid polymerisation of deposited carbon. Only with feed CO2:CH4 > 2 or with O2 co-feeding was coke-induced deactivation eliminated. In particular, O2 co-feeding gave improved carbon removal, product H2:CO ratios more suitable for downstream GTL processing and stable catalytic performance. Conversion-time data were adequately fitted to the generalised Levenspiel reaction-deactivation model. Activation energy estimate (66–129 kJ mol−1) was dependent on the CO2:CH4 ratio but representative of other hydrocarbon reforming reactions on Ni-based catalysts.  相似文献   

19.
The objectives of this study were to prepare Ni–Cu/CaO–SiO2 catalysts by a modified polyol process with different preparation conditions and evaluate the feasibility of hydrogen production from methanol steam reforming. CaO–SiO2 materials possess high specific surface areas and CO2 absorption capacities which were synthesized through the sol–gel method to serve as supports. The experimental results of the methanol steam reforming indicated that the highest catalytic activity was achieved when the Ni–Cu/CaO–SiO2 catalyst was prepared under Ar atmosphere at a reduction temperature of 160 °C (160-Ar). The 160-Ar catalyst synthesized by this method has a large pore volume and a high mesoporosity. These physical properties contribute to the effective dispersion of metal particles in the 160-Ar catalyst. Increasing the MeOH/H2O ratio was found to promote the water–gas shift reaction and direct methanol decomposition to produce more H2.  相似文献   

20.
采用反应分子动力学(ReaxFF MD)模拟方法研究了O2/CO2/H2O气氛下CO的燃烧。结果表明:根据化学平衡原理,高浓度CO2抑制CO的氧化,同时CO2在高温下参与反应CO2+H—→CO+OH,进一步抑制CO氧化。在较低温度条件下,较高浓度H2O的三体效应显著,抑制了CO氧化。另一方面,在较高温度条件下,H2O参与的H2O+H—→H2+OH和H2O+O—→OH+OH反应占据其化学作用的主导地位,进而促进CO氧化。随着O2浓度的增加,CO的氧化速度加快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号