首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using fuel cell systems for distributed generation (DG) applications represents a meaningful candidate to conventional plants due to their high power density and the heat recovery potential during the electrochemical reaction. A hybrid power system consisting of a proton exchange membrane (PEM) fuel cell stack and an organic Rankine cycle (ORC) is proposed to utilize the waste heat generated from PEM fuel cell. The system performance is evaluated by the steady-state mathematical models and thermodynamic laws. Meanwhile, a parametric analysis is also carried out to investigate the effects of some key parameters on the system performance, including the fuel flow rate, PEM fuel cell operating pressure, turbine inlet pressure and turbine backpressure. Results show that the electrical efficiency of the hybrid system combined by PEM fuel cell stack and ORC can be improved by about 5% compared to that of the single PEM fuel cell stack without ORC, and it is also indicated that the high fuel flow rate can reduce the PEM fuel cell electrical efficiency and overall electrical efficiency. Moreover, with an increased fuel cell operating pressure, both PEM fuel cell electrical efficiency and overall electrical efficiency firstly increase, and then decrease. Turbine inlet pressure and backpressure also have effects on the performance of the hybrid power system.  相似文献   

2.
  目的  固体氧化物燃料电池(SOFC)是一种尖端技术,可通过电化学反应将碳氢燃料中的化学能转化为电和热,具有燃料来源广、发电效率高、余热品质高、运行安静、排放低、可模块化安装等优点,是实现化石能源高效清洁利用的有效途径之一。  方法  文章阐释了SOFC发电原理,介绍了国内外SOFC技术和产业化现状,分析了基于SOFC的分布式热电联供、联合循环发电以及煤气化燃料电池发电技术(IGFC)新一代发电系统应用场景。  结果  通过燃料电池发电技术路线和产业化现状研究,浅析了目前存在的问题,并结合我国资源禀赋和对高效清洁发电装置的市场需求,对该领域的未来发展趋势进行了展望。  结论  对比国内外在SOFC领域的技术差距,基于国内在SOFC电堆核心材料方面的优势,加大对SOFC系统集成技术攻关,为新一代以高温燃料电池为核心的清洁高效发电产业奠定基础。  相似文献   

3.
In proton exchange membrane fuel cell (PEMFC) operations, the electrochemical reactions produce a rise in temperature. A fuel cell stack therefore requires an effective cooling system for optimum performance. In this study, miniature heat pipes were applied for cooling in PEMFC. Three alternatives were considered in tests: free convection, forced convection cooling with air, and also water. An analytical model was developed to show the possibility of evoking heat from inside a fuel cell stack with different numbers of miniature heat pipes. An experiment setup was designed and then used for further analysis. The proposed experiment setup consisted of a simulated fuel cell that produced heat and a number of thermosyphon miniature heat pipes to evoke heat from the simulated fuel cell. The experiment results reported in this paper present advantages and disadvantages of each tested cooling scenario. Results show that each cooling scenario, using a different number of heat pipes, provided different heat removal rates for PEMFC cooling.  相似文献   

4.
With the development of the information and communication technology (ICT) industry, the energy consumption of data centers is continuously increasing. High-temperature polymer electrolyte fuel cells (HT-PEFC) have a high operating temperature of 120 °C or higher; thus, the heat generated from fuel cells stack is effectively used as a heat source for a absorption refrigerator (AR) to generate cooling. The combined cooling and power (CCP) system is proposed to satisfy the energy demand of data centers that require both power and cooling. The CCP system comprises an HT-PEFC and a double-effect AR that recovers the wasted heat of the fuel cell stack. As a result of analyzing the electrical and cooling efficiency of the CCP system according to the fuel cell operating conditions, the overall efficiency increased to 95%, which was significantly higher than the existing system. Based on the simulation of the developed model, coefficient of performance (COP) and cooling capacity depending on the temperature changes of chilled water and cooling water were calculated within the stack temperature range of 150–180 °C, and the COP changed from 1.1 to 1.58 depending on the conditions. The developed CCP system model can be used to plan strategies for flexible fuel cell operation according to the power and cooling demands required in the data center.  相似文献   

5.
Three configurations of solid oxide fuel cell (SOFC) micro-combined heat and power (micro-CHP) systems are studied with a particular emphasis on the application for single-family detached dwellings. Biogas is considered to be the primary fuel for the systems studied. In each system, a different method is used for processing the biogas fuel to prevent carbon deposition over the anode of the cells used in the SOFC stack. The anode exit gas recirculation, steam reforming, and partial oxidation are the methods employed in systems I–III, respectively. The results predicted through computer simulation of these systems confirm that the net AC electrical efficiency of around 42.4%, 41.7% and 33.9% are attainable for systems I–III, respectively. Depending on the size, location and building type and design, all the systems studied are suitable to provide the domestic hot water and electric power demands for residential dwellings. The effect of the cell operating voltage at different fuel utilization ratios on the number of cells required for the SOFC stack to generate around 1 kW net AC electric power, the thermal-to-electric ratio (TER), the net AC electrical and CHP efficiencies, the biogas fuel consumption, and the excess air required for controlling the SOFC stack temperature is also studied through a detailed sensitivity analysis. The results point out that the cell design voltage is higher than the cell voltage at which the minimum number of cells is obtained for the SOFC stack.  相似文献   

6.
An automotive polymer-electrolyte fuel cell (PEFC) system with ultra-low platinum loading (0.15 mg-Pt cm−2) has been analyzed to determine the relationship between its design-point efficiency and the system efficiency at part loads, efficiency over drive cycles, stack and system costs, and heat rejection. The membrane electrode assemblies in the reference PEFC stack use nanostructured, thin-film ternary catalysts supported on organic whiskers and a modified perfluorosulfonic acid membrane. The analyses show that the stack Pt content can be reduced by 50% and the projected high-volume manufacturing cost by >45% for the stack and by 25% for the system, if the design-point system efficiency is lowered from 50% to 40%. The resulting penalties in performance are a <1% reduction in the system peak efficiency; a 2-4% decrease in the system efficiency on the urban, highway, and LA92 drive cycles; and a 6.3% decrease in the fuel economy of the modeled hybrid fuel-cell vehicle on the combined cycle used by EPA for emission and fuel economy certification. The stack heat load, however, increases by 50% at full power (80 kWe) but by only 23% at the continuous power (61.5 kWe) needed to propel the vehicle on a 6.5% grade at 55 mph. The reduced platinum and system cost advantages of further lowering the design-point efficiency from 40% to 35% are marginal. The analyses indicate that thermal management in the lower efficiency systems is very challenging and that the radiator becomes bulky if the stack temperature cannot be allowed to increase to 90-95 °C under driving conditions where heat rejection is difficult.  相似文献   

7.
《Journal of power sources》2004,137(2):206-215
We evaluated the performance of system combining a solid oxide fuel cell (SOFC) stack and a polymer electrolyte fuel cell (PEFC) stack by a numerical simulation. We assume that tubular-type SOFCs are used in the SOFC stack. The electrical efficiency of the SOFC–PEFC system increases with increasing oxygen utilization rate in the SOFC stack. This is because the amount of exhaust heat of the SOFC stack used to raise the temperature of air supplied to it decreases as its oxygen utilization rate increases and because that used effectively as the reaction heat of the steam reforming reaction of methane in the stack reformer increases. The electrical efficiency of the SOFC–PEFC system at 190 kW ac is 59% (LHV), which is equal to that of the SOFC-gas turbine combined system at 1014 kW ac.  相似文献   

8.
Amir Faghri  Zhen Guo 《传热工程》2013,34(3):232-238
This paper describes recent applications of heat pipe technology in fuel cell systems, which include new stack designs with heat pipes to improve heat transfer as well as work on fuel cell system level design and engineering with adopting the heat pipe concept. In one design, micro-heat pipes are inserted and bonded in bipolar plates for thermal control in the fuel cell stack. In another design, flat heat pipes are integrated with a carbon bipolar plate for improving thermal control in the fuel cell stack. Finally, based on the heat pipe concept, we specifically developed a series of direct methanol fuel cell (DMFC) systems characterized as passive technology for methanol fuel delivery, water recirculation, and air and thermal management. Long-term durability and stability of the passive DMFC systems have been proved experimentally.  相似文献   

9.
Solid oxide fuel cell (SOFC) with a lot of advantages, such as high efficiency, low emission and great fuel compatibility, has broad application prospects in many fields. However, an appropriate control strategy is necessary for SOFC systems, which could not only maintain high system efficiency during load-change, but also supplement power after attenuation to extend system service life. In the article, three different control strategies are proposed, in which fuel flow, fuel utilization and cell voltage are controlled as constants respectively. The performance and applicability of strategies for load-change and cell degradation are evaluated through experiment data and simulations. Meanwhile, stack temperature, voltage, fuel utilization and efficiency are selected as main constraints to analyze the application scope of strategies. And in load increasing process of a 1 kW SOFC combined heat and power (CHP) system fed with methanol, the strategies are adopted to verify their effectiveness.  相似文献   

10.
We propose a system that combines a seal-less planar solid oxide fuel cell (SOFC) stack and polymer electrolyte fuel cell (PEFC) stack. In the proposed system, fuel for the SOFC (SOFC fuel) and fuel for the PEFC (PEFC fuel) are fed to each stack in parallel. The steam reformer for the PEFC fuel surrounds the seal-less planar SOFC stack. Combustion exhaust heat from the SOFC stack is used for reforming the PEFC fuel. We show that the electrical efficiency in the SOFC–PEFC system is 5% higher than that in a simple SOFC system using only a seal-less planar SOFC stack when the SOFC operation temperature is higher than 973 K.  相似文献   

11.
The heat produced from the electrochemical reaction in a fuel cell is worth studying, the heat recycled make the fuel cell more efficiency, especially in a high-temperature proton exchange membrane fuel cell (HTPEMFC). In low temperature PEMFC system, the heat is removed by cooling system avoid the membrane degradation exceed 100 °C. But in HTPEMFC system, the membrane can afford higher temperature (Tg 420 °C), means the cooling system could be removing and through changing the inside flow field to uniform the unit cell temperature in stack. In this study, a 50–100 W HTPEMFC stack is demonstrated and a micro sensor was integrated with the HTPEMFC stack for in situ measurements during the experiments. The results show that when the stack is operated at low and high current loads, the heat generation from the fuel cell causes noticeable changes in the cell temperature, especially in the middle of the stack. In the middle cell of the stack, the temperature exceeds the operating temperature (160 °C) by 10–30 °C when the current increases. Moreover, changing the flow field to counter-flow or co-flow with U- or Z-type flow fields causes changes to the thermal balance in the stack. The performance, however, remains almost the same for each type of flow field when there is no water affecting the HTPEMFC, even though the change in thermal balance in the stack still occurs. The results of the micro sensor in situ monitoring for each type of flow field displayed higher temperatures on the middle cells. If the waste heat is appropriately used, the high-temperature fuel cell will then be more efficient than the low-temperature fuel cell. The results also show that, in the HTPEMFC stack, the heat generated from the fuel cell can be reused in other ways.  相似文献   

12.
《Journal of power sources》2007,171(2):1023-1032
The Institute for Energy and Environment (IEE) at the University of Strathclyde has developed various fuel cell (FC) systems for stationary and vehicular applications. In particular the author is involved in the development of alkaline fuel cell (AFC) systems. To understand the dynamic behaviour of the system's key element, the alkaline fuel cell stack, a dynamic model was developed allowing the characterisation of the electrochemical parameters. The model is used to forecast the behaviour of the fuel cell stack under various dynamic operating conditions. The so-called Nernst potential, which describes the open circuit voltage of the stack, is calculated using thermodynamic theory. Electrochemistry theory has been used to model the sources of the electric losses within the FC, such as activation, ohmic and concentration losses. The achievable value of this paper is the first publication of a detailed dynamic AFC based on mass balance, thermodynamics and electrochemical theory. The effects of the load changes on various fuel cell parameters, such as electrolyte concentration and concentrations of dissolved hydrogen and oxygen were covered in this investigation using the author's model. The model allows a detailed understanding of the dynamic effects within the AFC during load change events, which lead to the experienced electric response of the overall FC stack.  相似文献   

13.
The design, construction, and flight test of a fuel cell-powered small unmanned aircraft are described. A fuel cell system featuring a polymer electrolyte membrane fuel cell combined with a hydrogen generator, which serves as a new power source alternative to the existing batteries, is proposed. The hydrogen generator uses a catalytic hydrolysis reaction to extract hydrogen from an alkaline solution of sodium borohydride, and constructed with a reactor, pump, separator, and fuel cartridge. Considering the performance characteristics of the fuel cell, the hybrid power management of a fuel cell and a battery was contrived. The fuel cell stack, hydrogen generator, and power management system were evaluated at the various load conditions. A high efficiency unmanned aircraft was designed and fabricated to validate the possibility of the proposed fuel cell system, and a small flight control system was developed for a high endurance test flight. Wind-tunnel tests were conducted before the flight tests under actual flight conditions. The possibility for the utilization of a fuel cell in a small aircraft was validated through the fuel cell powered flight test. The fuel cell aircraft flew for 2 h without incidents in the fuel cell system.  相似文献   

14.
Computational fluid dynamics (CFD) and finite element analysis (FEA) are important modelling and simulation techniques to design and develop fuel cell stacks and their balance of plant (BoP) systems.The aim of this work is to design a microtubular solid oxide fuel cell (SOFC) stack by coupling CFD and FEA models to capture the multiphysics nature of the system. The focus is to study the distribution of fluids inside the fuel cell stack, the dissipation of heat from the fuel cell bundle, and any deformation of the fuel cells and the stack canister due to thermal stresses, which is important to address during the design process. The stack is part of an innovative all-in-one SOFC generator with an integrated BoP system to power a fixed wing mini unmanned aerial vehicle. Including the computational optimisation at an early stage of the development process is hence a prerequisite in developing a reliable and robust all-in-one SOFC generator system. The presented computational model considers the bundle of fuel cells as the heat source. This could be improved in the future by replacing the heat source with electrochemical reactions to accurately predict the influence of heat on the stack design.  相似文献   

15.
The durability and cost are the most important bottlenecks in fuel cell vehicle (FCV) commercialization. To alleviate these two drawbacks, a new power management strategy (PMS) is proposed on a triple fuel cell stack configuration (TFSC) to enhance the fuel cell lifetime in a commercialized FCV such as Toyota-Mirai. The two main innovations of the present study are summarized to: (i) lifetime assessing study of the proposed TFSC under the vehicular condition and comparing them with those of single fuel cell stack configuration (SFSC), and (ii) performing an economics analysis to compute and compare the stack costs of triple and single configurations. The lifetime is calculated based on all the operating modes during the combined driving cycle including start/stop cycles, idling or constant potential operation, load cycling, and high current operation. The result reveals that TFSC improves the lifetime by 18.93% compared to the SFSC. It also indicates that during the FCV lifespan, the stack cost of the TFSC is around 14% less than that of the SFSC, which makes triple stack more feasible.  相似文献   

16.
《Journal of power sources》2002,105(2):120-126
The consumption of fuel in cars can be reduced by using hybrid concepts. Even for fuel cell vehicles, a high power battery may cut costs and allow the recovery of energy during retarding. Alkaline batteries, such as nickel–metal hydride batteries, have displayed long cycle life combined with high power ability. In order to improve the power/energy ratio of Ni/MH to even higher values, the cells may be arranged in a bipolar stack design.  相似文献   

17.
The proton exchange membrane fuel cell (PEMFC) stack is a key component in the fuel cell/battery hybrid vehicle. Thermal management and optimized control of the PEMFC under real driving cycle remains a challenging issue. This paper presents a new hybrid vehicle model, including simulations of diver behavior, vehicle dynamic, vehicle control unit, energy control unit, PEMFC stack, cooling system, battery, DC/DC converter, and motor. The stack model had been validated against experimental results. The aim is to model and analyze the characteristics of the 30 kW PEMFC stack regulated by its cooling system under actual driving conditions. Under actual driving cycles (0–65 kW/h), 33%–50% of the total energy becomes stack heat; the heat dissipation requirements of the PEMFC stack are high and increase at high speed and acceleration. A PID control is proposed; the cooling water flow rate is adjusted; the control succeeded in stabilizing the stack temperature at 350 K at actual driving conditions. Constant and relative lower inlet cooling water temperature (340 K) improves the regulation ability of the PID control. The hybrid vehicle model can provide a theoretical basis for the thermal management of the PEMFC stack in complex vehicle driving conditions.  相似文献   

18.
It may soon become possible to produce hydrogen from hydrolysed carbohydrates instead of ethanol via fermentation and distillation, employing aqueous phase reforming. The environmental merits of these two different energy products and their uses are compared on a life cycle basis, based on expanded systems in the context of a coal-intensive energy economy. Eight industrial options are defined: ethanol for peak power generation with or without heat integration, hydrogen for peak power generation with and without heat integration, ethanol for use in a flexi-fuel vehicle and a fuel cell vehicle, and hydrogen use in an internal combustion engine vehicle and a fuel cell vehicle. Aqueous phase reforming to produce hydrogen is shown to generally out-perform the corresponding fermentation–distillation ethanol options. Peak power generated from ethanol would be a preferred short-term option, with peak power from hydrogen in the medium term ceding to the environmentally preferred option of hydrogen fuel cell vehicles in the long-term.  相似文献   

19.
In this study, both energetic and exergetic performances of a combined heat and power (CHP) system for vehicular applications are evaluated. This system proposes ammonia-fed solid oxide fuel cells based on proton conducting electrolyte (SOFC-H+) with a heat recovery option. Fuel consumption of combined fuel cell and energy storage system is investigated for several cases. The performance of the portable SOFC system is studied in a wide range of the cell’s average current densities and fuel utilization ratios. Considering a heat recovery option, the system exergy efficiency is calculated to be 60-90% as a function of current density, whereas energy efficiency varies between 60 and 40%, respectively. The largest exergy destructions take place in the SOFC stack, micro-turbine, and first heat exchanger. The entropy generation rate in the CHP system shows a 25% decrease for every 100 °C increase in average operating temperature.  相似文献   

20.
In this paper, reaction engineering principles are utilized to analyze process conditions for producing sufficient hydrogen in an ammonia decomposition reactor for generating net power of 100 W in a fuel cell. It is shown that operating the reactor adiabatically results in a sharp decrease in temperature due to endothermic reaction, which results in low conversion of ammonia. For this reason, the reactor is heated electrically to provide heat for the endothermic reactions. It is observed that when the reactor is operated non-adiabatically, it is possible to get over 99.5% conversion of ammonia. The weight of absorbent to reduce ammonia to ppb levels is calculated. An energy balance on the reactor exit gas indicates that there is sufficient heat available to vaporize enough water to achieve 100% relative humidity in the fuel cell. A suitable fuel cell stack is designed and it is shown that this stack is able to provide the necessary power to electrically heat the reactor and produce net power of 100 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号