首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Gasification is a thermo-chemical reaction which converts biomass into fuel gases in a reactor. The efficiency of conversion depends on the effective working of the gasifier. The first step in the conversion process is the selection of a suitable feedstock capable of generating more gaseous fuels. This paper analyses the performance of different biomasses during gasification through energy and exergy analysis. A quasi-equilibrium model is developed to simulate and compare the feasibility of different biomass materials as gasifier feedstock. Parametric studies are conducted to analyze the effect of temperature, steam to biomass ratio and equivalence ratio on energy and exergy efficiencies. Of the biomasses considered, sawdust has the highest energy and exergy efficiencies and lowest irreversibility. At a gasification temperature of 1000 K, the steam to biomass ratio of unity and the equivalence ratio of 0.25, the energy efficiency, exergy efficiency and irreversibility of sawdust are 35.62%, 36.98% and 10.62 MJ/kg, respectively. It is also inferred that the biomass with lower ash content and higher carbon content contributes to maximum energy and exergy efficiencies.  相似文献   

2.
Biomass gasification is a promising option for the sustainable production of hydrogen rich gas. Five different commercial or pilot scale gasification systems are considered for the design of a hydrogen production plant that generates almost pure hydrogen. For each of the gasification technique models of two different hydrogen production plants are developed in Cycle-Tempo: one plant with low temperature gas cleaning (LTGC) and the other with high temperature gas cleaning (HTGC). The thermal input of all plants is 10 MW of biomass with the same dry composition. An exergy analysis of all processes has been made. The processes are compared on their thermodynamic performance (hydrogen yield and exergy efficiency). Since the heat recovery is not incorporated in the models, two efficiencies are calculated. The first one is calculated for the case that all residual heat can be applied, the case with ideal heat recovery, and the other is calculated for the case without heat recovery. It is expected that in real systems only a part of the residual heat can be used. Therefore, the actual value will be in between these calculated values. It was found that three processes have almost the same performance: The Battelle gasification process with LTGC, the FICFB gasification process with LTGC, and the Blaue Turm gasification process with HTGC. All systems include further processing of the cleaned gas from biomass gasification into almost pure hydrogen. The calculated exergy efficiencies are, respectively, 50.69%, 45.95%, and 50.52% for the systems without heat recovery. The exergy efficiencies of the systems with heat recovery are, respectively, 62.79%, 64.41%, and 66.31%. The calculated hydrogen yields of the three processes do not differ very much. The hydrogen yield of the Battelle LTGC process appeared to be 0.097 kg (kg(dry biomass))−1, for the FICFB LTGC process a yield of 0.096 kg (kg(dry biomass))−1 was found, and for the Blaue Turm HTGC 0.106 kg (kg(dry biomass))−1.  相似文献   

3.
In this paper, a detailed review is presented to discuss biomass‐based hydrogen production systems and their applications. Some optimum hydrogen production and operating conditions are studied through a comprehensive sensitivity analysis on the hydrogen yield from steam biomass gasification. In addition, a hybrid system, which combines a biomass‐based hydrogen production system and a solid oxide fuel cell unit is considered for performance assessment. A comparative thermodynamic study also is undertaken to investigate various operational aspects through energy and exergy efficiencies. The results of this study show that there are various key parameters affecting the hydrogen production process and system performance. They also indicate that it is possible to increase the hydrogen yield from 70 to 107 g H2 per kg of sawdust wood. By studying the energy and exergy efficiencies, the performance assessment shows the potential to produce hydrogen from steam biomass gasification. The study further reveals a strong potential of this system as it utilizes steam biomass gasification for hydrogen production. To evaluate the system performance, the efficiencies are calculated at particular pressures, temperatures, current densities, and fuel utilization factors. It is found that there is a strong potential in the gasification temperature range 1023–1423 K to increase energy efficiency with a hydrogen yield from 45 to 55% and the exergy efficiency with hydrogen yield from 22 to 32%, respectively, whereas the exergy efficiency of electricity production decreases from 56 to 49.4%. Hydrogen production by steam sawdust gasification appears to be an ultimate option for hydrogen production based on the parametric studies and performance assessments that were carried out through energy and exergy efficiencies. Finally, the system integration is an attractive option for better performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A new system is proposed for the treatment of waste aluminium. The total exergy loss (EXL) in the system for the co-production of 1 kg of hydrogen at 30 MPa and 26 kg of aluminium hydroxide is evaluated from the viewpoint of life cycle assessment (LCA) by comparison with the EXLs in conventional systems. The exergy flow diagram reveals that the exergy of waste aluminium, which contains only 15 mass% metal, is still large, while that of pure aluminium hydroxide is relatively small. Therefore, the EXL in the proposed system (150.9 MJ) is 55% less than that in the conventional system (337.7 MJ) in which the gas compressor and production of aluminium hydroxide consume significantly more exergy. The results also indicate that exergy analysis should be applied to the LCA as a critical measure for practical use, in addition to the conventional LCA of carbon dioxide emission.  相似文献   

5.
Growing the consumption of fossil fuels and emerging global warming issue have driven the research interests toward renewable and environmentally friendly energy sources. Biomass gasification is identified as an efficient technology to produce sustainable hydrogen. In this work, energy and exergy analysis coupled with thermodynamic equilibrium model were implemented in biomass gasification process for production of hydrogen. In this regard, a detailed comparison of the performance of a downdraft gasifier was implemented using air, steam, and air/steam as the gasifying agents for horse manure, pinewood and sawdust as the biomass materials. The comparison results indicate that the steam gasification of pinewood generates a more desired product gas compositions with a much higher hydrogen exergy efficiency and low exergy values of unreacted carbon and irreversibility. Then the effects of the inherent operating factors were investigated and optimized applying a response surface methodology to maximize hydrogen exergy efficiency of the process. A hydrogen exergy efficiency of 44% was obtained when the product gas exergy efficiency reaches to the highest value (88.26%) and destruction and unreacted carbon efficiencies exhibit minimum values of 7.96% and 1.9%.  相似文献   

6.
The effect of fuel composition on the thermodynamic efficiency of gasifiers and gasification systems is studied. A chemical equilibrium model is used to describe the gasifier. It is shown that the equilibrium model presents the highest gasification efficiency that can be possibly attained for a given fuel. Gasification of fuels with varying composition of organic matter, in terms of O/C and H/C ratio as illustrated in a Van Krevelen diagram, is compared. It was found that exergy losses in gasifying wood (O/C ratio around 0.6) are larger than those for coal (O/C ratio around 0.2). At a gasification temperature of 927 °C, a fuel with O/C ratio below 0.4 is recommended, which corresponds to a lower heating value above 23 MJ/kg. For gasification at 1227 °C, a fuel with O/C ratio below 0.3 and lower heating value above 26 MJ/kg is preferred. It could thus be attractive to modify the properties of highly oxygenated biofuels prior to gasification, e.g. by separation of wood into its components and gasification of the lignin component, thermal pre-treatment, and/or mixing with coal in order to enhance the heating value of the gasifier fuel.  相似文献   

7.
This study deals with evaluating the energy and exergy utilization efficiencies in the Turkish agricultural sector over a 12‐year period from 1990 to 2001. In the energy and exergy analyses, two main energy sources, namely fuels and electricity, are taken into consideration, while the sectoral energy and exergy efficiencies are compared for this period. These main energy sources include diesel for tractors and other vehicles, and electricity for pumps. Overall energy utilization efficiencies are obtained to vary between 29.1 and 41.1%, while overall exergy utilization efficiencies are found to range from 27.9 to 37.4% in the analysed years, respectively. It may be concluded that the present technique proposed here may be used as a useful tool in analysing and evaluating the energy and exergy utilization efficiencies, identifying energy efficiency and/or energy conservation opportunities and dictating the energy strategies of countries. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Cofiring biomass with fossil fuels is emerging as a viable option for promoting the use of low quality renewable biomass fuels including energy crops. In the current work, dairy biomass (DB) is evaluated as a cofiring fuel with coal in a small scale 29 kWt boiler burner facility. Two types of coal (Texas lignite, TXL and Wyoming Powder River Basin coal, WYO) and two forms of partially composted DB fuels were investigated (low ash separated solids LA-PC-SepSol-DB and high ash soil surface HA-PC-SoilSurf-DB). Proximate and ultimate analyses performed on both coals and both DBs reveal the following: higher heating value (HHV) of 28,460–29,590 kJ/kg for dry ash free (DAF) coals and 21,450 kJ/kg for DB; nitrogen loading of 0.36 and 0.48 kg/GJ for WYO and TXL, respectively and 1.50 and 2.67 kg/GJ for the LA-PC-SepSol-DB and the HA-PC-SoilSurf-DB respectively; sulfur loading of 0.15 and 0.42 kg/GJ WYO and TXL, respectively and 0.33 and 0.43 kg/GJ for the LA-PC-SepSol-DB and the HA-PC-SoilSurf-DB respectively; ash loading from 3.10 to 8.02 kg/GJ for the coals and from 11.57 to 139 kg/GJ for the DB fuels.  相似文献   

9.
Importance of biodiesel as transportation fuel   总被引:1,自引:0,他引:1  
The scarcity of known petroleum reserves will make renewable energy resources more attractive. The most feasible way to meet this growing demand is by utilizing alternative fuels. Biodiesel is defined as the monoalkyl esters of vegetable oils or animal fats. Biodiesel is the best candidate for diesel fuels in diesel engines. The biggest advantage that biodiesel has over gasoline and petroleum diesel is its environmental friendliness. Biodiesel burns similar to petroleum diesel as it concerns regulated pollutants. On the other hand, biodiesel probably has better efficiency than gasoline. One such fuel for compression-ignition engines that exhibit great potential is biodiesel. Diesel fuel can also be replaced by biodiesel made from vegetable oils. Biodiesel is now mainly being produced from soybean, rapeseed and palm oils. The higher heating values (HHVs) of biodiesels are relatively high. The HHVs of biodiesels (39–41 MJ/kg) are slightly lower than that of gasoline (46 MJ/kg), petrodiesel (43 MJ/kg) or petroleum (42 MJ/kg), but higher than coal (32–37 MJ/kg). Biodiesel has over double the price of petrodiesel. The major economic factor to consider for input costs of biodiesel production is the feedstock, which is about 80% of the total operating cost. The high price of biodiesel is in large part due to the high price of the feedstock. Economic benefits of a biodiesel industry would include value added to the feedstock, an increased number of rural manufacturing jobs, an increased income taxes and investments in plant and equipment. The production and utilization of biodiesel is facilitated firstly through the agricultural policy of subsidizing the cultivation of non-food crops. Secondly, biodiesel is exempt from the oil tax. The European Union accounted for nearly 89% of all biodiesel production worldwide in 2005. By 2010, the United States is expected to become the world's largest single biodiesel market, accounting for roughly 18% of world biodiesel consumption, followed by Germany.  相似文献   

10.
M.A. Rosen 《Energy》1996,21(12):1079-1094
The results are reported of comparisons based on energy and exergy analyses of a wide range of production processes for hydrogen and hydrogen-derived fuels (HDFs). A commercial process-simulation computer code, previously enhanced by the author for exergy analysis, is used in the analyses. Depending on the process and the efficiency definition used, overall efficiencies are determined to range widely, from 21 to 92% for energy efficiencies and from 19 to 83% for exergy efficiencies. The losses for all processes are found to exhibit many common factors. Energy losses associated with emissions account for 100% of the total energy losses, while exergy losses associated with emissions account for 4 to 11% of the total exergy losses. The remaining exergy losses are associated with internal consumptions. It is anticipated that the results will prove useful to those involved in the improvement of existing and design of future production processes for hydrogen and HDFs.  相似文献   

11.
The main objectives in carrying out the present study are twofold, namely to estimate the energy and exergy utilization efficiencies for the residential–commercial sector and to compare those of various countries with each other. In this regard, Turkey is given as an illustrative example with its latest figures in 2002 since the data related to the following years are still being processed. Total energy and exergy inputs in this year are calculated to be 3257.20 and 3212.42 PJ, respectively. Annual fuel consumptions in space heating, water heating and cooking activities as well as electrical energy uses by appliances are also determined. The energy and exergy utilization efficiency values for the Turkish residential–commercial sector are obtained to be 55.58% and 9.33%, respectively. Besides this, Turkey's overall energy and exergy utilization efficiencies are found to be 46.02% and 24.99%, respectively. The present study clearly indicates the necessity of the planned studies toward increasing exergy utilization efficiencies in the sector studied.  相似文献   

12.
Biomass has great potential as a clean, renewable feedstock for producing modern energy carriers. This paper focuses on the process of biomass gasification, where the synthesis gas may subsequently be used for the production of electricity, fuels and chemicals. The gasifier is one of the least-efficient unit operations in the whole biomass-to-energy technology chain and an analysis of the efficiency of the gasifier alone can substantially contribute to the efficiency improvement of this chain. The purpose of this paper is to compare different types of biofuels for their gasification efficiency and benchmark this against gasification of coal. In order to quantify the real value of the gasification process exergy-based efficiencies, defined as the ratio of chemical and physical exergy of the synthesis gas to chemical exergy of a biofuel, are proposed in this paper. Biofuels considered include various types of wood, vegetable oil, sludge, and manure. In this study, exergetic efficiencies are evaluated for an idealized gasifier in which chemical equilibrium is reached, ashes are not considered and heat losses are neglected. The gasification efficiencies are evaluated at the carbon-boundary point, where exactly enough air is added to avoid carbon formation and achieve complete gasification. The cold-gas efficiency of biofuels was found to be comparable to that of coal. It is shown that the exergy efficiencies of biofuels are lower than the corresponding energetic efficiencies. For liquid biofuels, such as sludge and manure, gasification at the optimum point is not possible, and exergy efficiency can be improved by drying the biomass using the enthalpy of synthesis gas.  相似文献   

13.
In this paper, an attempt is made to investigate the performance characteristics of a photovoltaic (PV) and photovoltaic-thermal (PV/T) system based on energy and exergy efficiencies, respectively. The PV system converts solar energy into DC electrical energy where as, the PV/T system also utilizes the thermal energy of the solar radiation along with electrical energy generation. Exergy efficiency for PV and PV/T systems is developed that is useful in studying the PV and PV/T performance and possible improvements. Exergy analysis is applied to a PV system and its components, in order to evaluate the exergy flow, losses and various efficiencies namely energy, exergy and power conversion efficiency. Energy efficiency of the system is calculated based on the first law of thermodynamics and the exergy efficiency, which incorporates the second law of thermodynamics and solar irradiation exergy values, is also calculated and found that the latter is lower for the electricity generation using the considered PV system. The values of “fill factor” are also determined for the system and the effect of the fill factor on the efficiencies is also evaluated. The experimental data for a typical day of March (27th March 2006) for New Delhi are used for the calculation of the energy and exergy efficiencies of the PV and PV/T systems. It is found that the energy efficiency varies from a minimum of 33% to a maximum of 45% respectively, the corresponding exergy efficiency (PV/T) varies from a minimum of 11.3% to a maximum of 16% and exergy efficiency (PV) varies from a minimum of 7.8% to a maximum of 13.8%, respectively.  相似文献   

14.
Fuel ethanol is considered one of the most important renewable fuels due to the economic and environmental benefits of its use. Lignocellulosic biomass is the most promising feedstock for producing bioethanol due to its global availability and to the energy gain that can be obtained when non-fermentable materials from biomass are used for cogeneration of heat and power. In this work, several process configurations for fuel ethanol production from lignocellulosic biomass were studied through process simulation using Aspen Plus. Some flowsheets considering the possibilities of reaction–reaction integration were taken into account among the studied process routes. The flowsheet variants were analyzed from the energy point of view utilizing as comparison criterion the energy consumption needed to produce 1 L of anhydrous ethanol. Simultaneous saccharification and cofermentation process with water recycling showed the best results accounting an energy consumption of 41.96 MJ/L EtOH. If pervaporation is used as dehydration method instead of azeotropic distillation, further energy savings can be obtained. In addition, energy balance was estimated using the results from the simulation and literature data. A net energy value of 17.65–18.93 MJ/L EtOH was calculated indicating the energy efficiency of the lignocellulosic ethanol.  相似文献   

15.
This study deals with the energy and exergy analysis of a molten carbonate fuel cell hybrid system to determine the efficiencies, irreversibilities and performance of the system. The analysis includes the operation of each component of the system by mass, energy and exergy balance equations. A parametric study is performed to examine the effect of varying operating pressure, temperature and current density on the performance of the system. Furthermore, thermodynamic irreversibilities in each component of the system are determined. An overall energy efficiency of 57.4%, exergy efficiency of 56.2%, bottoming cycle energy efficiency of 24.7% and stack energy efficiency of 43.4% are achieved. The results demonstrate that increasing the stack pressure decreases the overpotential losses and, therefore, increases the stack efficiency. However, this increase is limited by the remaining operating conditions and the material selection of the stack. The fuel cell and the other components in which chemical reactions occur, show the highest exergy destruction in this system. The compressor and turbine on the other hand, have the lowest entropy generation and, thus, the lowest exergy destruction.  相似文献   

16.
Electrochemical hydrogen compression (EHC) is a promising alternative to conventional compressors for hydrogen storage at high pressure, because it has a simple structure, low cost of hydrogen delivery, and high efficiency. In this study, the performance of an EHC is evaluated using a three-dimensional numerical model and finite volume method. The results of numerical analysis for a single cell of EHC are extended to a full stack of EHC. In addition, exergy and exergoeconomic analyses are carried out based on the numerical data. The effects of operating temperature, pressure, and gas diffusion layer (GDL) thickness on the energy and exergy efficiencies and the exergy cost of hydrogen are examined. The motivation of this study is to examine the performance of the EHC at different working conditions and also to determine the exergy cost of hydrogen. The results reveal that the energy and exergy efficiency of EHC stack improve by almost 3.1% when operating temperature increases from 363 K to 393 K and the exergy cost of hydrogen decreases by 0.5% at current density of 5000 A m−2. It is concluded that energy and exergy efficiency of EHC stack decrease by 25% and 5.4% when the cathode pressure increases from 1 bar to 30 bar, respectively. Moreover, it is realized that the GDL thickness has a considerable effect on the EHC performance. The exergy cost of hydrogen decreases by 53% when the GDL thickness decreases from 0.5 mm to 0.2 mm at current density of 5000 A m−2.  相似文献   

17.
By building on the first part of our analysis, this second part attempts to provide a further understanding of the UK society's metabolism, its impact and offer policy suggestions that could promote a shift towards sustainability. The methodologies employed in this second part include Exergy Analysis (EA) and Extended Exergy Analysis (EEA). Exergy inputs and outputs amounted to 17423.9 and 11888.7 PJ, respectively, with energy carries, mainly fossil fuels, being both the predominant inputs (15597.1 PJ) and outputs (5147.1 PJ). Exergy consumption and efficiency for various economic sectors and subsectors have been calculated with the residential and service sector showing the lowest exergy conversion efficiencies (11.2% and 12.3%, respectively) while certain industrial subsectors, such as the aluminium and iron/steel industries showed the highest exergy conversion factors (67.0 and 62.1%). Extended exergy efficiencies were somewhat different owing to the different calculation procedure. Extended exergy efficiencies were 91.4% for the extraction sector, 38.9% for the conversion sector, 49.1% for the agriculture sector, 31.5% for the transportation sector, 38.6% for the industrial sector and 80.0% for the tertiary sector.  相似文献   

18.
Results are reported of energy and exergy analyses of the Imperial Chemical Industries low-pressure process for methanol from natural gas. The process involves generation of a synthesis gas by steam-methane reforming, compression of the synthesis gas, methanol synthesis, and distillation of the crude methanol. The analyses are carried out using a computer code capable of performing process-simulation and energy and exergy analyses. The energy and exergy efficiencies for the overall process are found to be 39 and 41%, respectively. The majority of energy losses is found to be associated with emissions of cooling water and stack gas. The majority of exergy losses is found to be due to internal consumptions, particularly within the combustion, compression and methanol synthesis systems. The energy losses associated with emissions of cooling water and stack gas, because of their low quality, are shown to be relatively insignificant on an exergy basis. The results may prove valuable to those involved in the design, optimization and modification of production plants for methanol and related fuels.  相似文献   

19.
Since biomass resources can be found with different contents in most regions of the world, biomass/gasification (Biog) coupling processes can be considered as an attractive and useful technology for integrating in polygeneration configurations. In this regard, a new polygeneration energy configuration based on Biog process is proposed and its conceptual analysis is presented. In the new energy process, a Rankine cycle, a water electrolysis cycle (based on solid oxide electrolyzer, SOE), and a multi-effect desalination (MED) unit are embedded to generate electricity, hydrogen fuel, and freshwater, respectively. The considered polygeneration configuration is comprehensively investigated and discussed utilizing a parametric evaluation and from thermodynamic, energetic and exergoeconomic points of view. Relying on the proposed system can provide a new approach to produce carbon-free hydrogen fuel and freshwater in order to achieve an efficient, modern and green polygeneration configuration. The results indicated that the electrical power generated by the considered polygeneration configuration is close to 1735 kW. In addition, the system is capable of producing almost 9880 kg/h of freshwater and 12.3 kg/h of hydrogen. In such a context, the energy efficiency and total products unit exergy cost were 36.4% and 16.6 USD/GJ, respectively. Also, the system could achieve an exergy efficiency of nearly 17.1%. Moreover, about 8.9 MW of process's exergy is destroyed. The performance of the proposed polygeneration configuration using four different biomass fuels is compared. It was determined that the total products unit exergy costs under paddy husk and paper biomass are approximately 14.8% and 8.6% higher than MSW, respectively.  相似文献   

20.
In this study we present an energy and exergy modelling of industrial final macaroni (pasta) drying process for its system analysis, performance evaluation and optimization. Using actual system data, a performance assessment of the industrial macaroni drying process through energy and exergy efficiencies and system exergy destructions is conducted. The heat losses to the surroundings and exergy destructions in the overall system are quantified and illustrated using energy and exergy flow diagrams. The total energy rate input to system is 316.25 kW. The evaporation rate is 72 kg h?1 (0.02 kg s?1) and energy consumption rate is found as 4.38 kW for 1 kg water evaporation from product. Humidity product rate is 792 kg h?1 (0.22 kg s?1) and energy consumption rate is found about 0.4 kW for 1 kg short cut pasta product. The energy efficiencies of the pasta drying process and the overall system are found to be as 7.55–77.09% and 68.63%. The exergy efficiency of pasta drying process is obtained to be as 72.98–82.15%. For the actual system that is presented the system exergy efficiency vary between 41.90 and 70.94%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号