首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The CO removal with preferential CO oxidation (PROX) over an industrial 0.5% Ru/Al2O3 catalyst from simulated reformates was examined and evaluated through considering its simultaneously involved oxidation and methanation reactions. It was found that the CO removal was fully due to the preferential oxidation of CO until 383 K. Over this temperature, the simultaneous CO methanation was started to make a contribution, which compensated for the decrease in the removal due to the decreased selectivity of PROX at higher temperatures. This consequently kept the effluent CO content as well as the overall selectivity estimated as the ratio of the removed CO amount over the sum of the consumed O2 and formed CH4 amounts from apparently increasing with raising reaction temperature from 383 to 443 K when the CO2 methanation was yet not fully started. At these temperatures the tested catalyst enabled the initial CO content of up to 1.0 vol.% to be removed to several tens of ppm at an overall selectivity of about 0.4 from simulated reformates containing 70 vol.% H2, 30 vol.% CO2 and with steam of up to 0.45 (volume) of dry gas. Varying space velocity in less than 9000 h−1 did not much change the stated overall selectivity. From the viewpoint of CO removal the article thus concluded that the methanation activity of the tested Ru/Al2O3 greatly extended its working temperatures for PROX, demonstrating actually a feasible way to formulate PROX catalysts that enable broad windows of suitable working temperatures.  相似文献   

2.
The catalytic effects of CO preferential oxidation and methanation catalysts for deep CO removal under different operating conditions (temperature, space velocity, water content, etc.) are systematically studied from the aspects of CO content, CO selectivity, and hydrogen loss index. Results indicate that the 3 wt% Ru/Al2O3 preferential oxidation catalysts reduce CO content to below 10 ppm with a high hydrogen consumption of 11.6–15.7%. And methanation catalysts with 0.7 wt% Ru/Al2O3 also exhibit excellent CO removal performance at 220–240 °C without hydrogen loss. Besides, NiClx/CeO2 methanation catalysts possess the characteristics of high space velocity, high activity, and high water-gas resistance, and can maintain the CO content at close to 20 ppm. Based on these experimental results, the coupling scheme of combining NiClx/CeO2 methanation catalysts (low cost and high reaction space velocity) with 0.7 wt% Ru/Al2O3 methanation catalysts (high activity) to reduce CO content to below10 ppm is proposed.  相似文献   

3.
Catalytic CO2 methanation is a potential solution for conversion of CO2 into valuable products, and the catalyst plays a crucial role on the CO2 conversion and CH4 selectivity. However, some details involved in the CO2 methanation over the carbon supported Ni catalysts are not yet fully understood. In this work, commercial coal char (CC) supported Ni catalysts were designed and prepared by two different methods (impregnation-thermal treatment method and thermal treatment-impregnation method) for CO2 methanation. Effects of the preparation conditions (including the thermal treatment temperature and time, the mass ratio of CC:Ni and the preparation method), as well as the reaction temperature of CO2 methanation, were investigated on the catalyst morphology, reducibility, structure and catalytic performance. Fibrous Ni-CC catalyst is achieved and shows high CO2 conversion (72.9%–100%) and CH4 selectivity (>99.0%) during the 600-min methanation process. Adverse changes of the catalyst surface and textural properties, reducibility, particle size and morphology are the potential factors leading to the catalyst deactivation, and possible solutions resistant to the deactivation were analyzed and discussed. The CO2 methanation mechanism with the CO route was proposed based on the oxidation-reduction cycle of Ni in this work.  相似文献   

4.
Au/α-Fe2O3 was combined with a CO2-sorbent (3-aminopropyltriethoxysilane (APTES) grafted on SBA-15 and hereafter denoted as APTES/SBA-15) to enhance preferential oxidation (PROX) of CO in H2. The CO2 molecules could be rapidly adsorbed on APTES/SBA-15 at low temperatures below 50 °C with a capacity of 0.68 mmol CO2/g-sample, and desorbed at a temperature range of 50 °C–80 °C. Three different configurations of the Au/α-Fe2O3 catalyst and the CO2-sorbent were tested in the PROX reaction, namely (i) the sorbent-free (catalyst//SBA-15//catalyst) configuration, (ii) the packed three-layer configuration (catalyst//CO2-sorbent//catalyst), and (iii) the mechanically mixed catalyst and CO2-sorbent configuration. Compared to configuration (i), configuration (ii) achieved an average 10% higher CO conversion at 50 °C and a GHSV of 65000 h−1. However, the CO concentration could not be lowered to below 70 ppm from 2000 ppm using configuration (ii) at a GHSV of 10000 h−1. Thus, a 5-layer configuration (catalyst//CO2-sorbent//catalyst//CO2-sorbent//catalyst) was used, and the CO concentration was lowered to ca. 25 ppm. The mechanism for enhancement of the PROX reaction by the continuous removal of CO2 by the CO2-sorbent is discussed and attributed to reduction of the surface carbonate on the Au/α-Fe2O3 catalyst formed during the PROX process.  相似文献   

5.
In this study, a simple solid-state synthesis method was employed for the preparation of the Ni–Co–Al2O3 catalysts with various Co loadings, and the prepared catalysts were used in CO2 methanation reaction. The results demonstrated that the incorporation of cobalt in nickel-based catalysts enhanced the activity of the catalyst. The results showed that the 15 wt%Ni-12.5 wt%Co–Al2O3 sample with a specific surface area of 129.96 m2/g possessed the highest catalytic performance in CO2 methanation (76.2% CO2 conversion and 96.39% CH4 selectivity at 400 °C) and this catalyst presented high stability over 10 h time-on-stream. Also, CO methanation was investigated and the results showed a complete CO conversion at 300 °C.  相似文献   

6.
Complete removal of CO by methanation in H2-rich gas stream was performed over different metal catalysts. Ni/ZrO2 and Ru/TiO2 were the most effective catalysts for complete removal of CO through the methanation. These catalysts can decrease a concentration of CO from 0.5% to 20ppm in the gases formed by the steam reforming of methane with a significantly low conversion of CO2 into methane. Catalytic activities of supported Ni and Ru strongly depended on the type of supports, i.e. ZrO2 for Ni and TiO2 for Ru are suitable supports for the methanation of CO. The effect of catalytic supports on methanation of CO could be explained by particles sizes of Ni and Ru metal. Catalytic activity of supported Ru catalysts for the complete removal of CO through methanation became higher as particle sizes of Ru metal became smaller, while Ni metal particles with relatively larger diameters were effective for the reaction.  相似文献   

7.
The Ni catalysts supported on a new structure with zirconia nanoparticles highly dispersed on the partly damaged clay layers has been prepared by the incipient wetness impregnation method and the new structure of the support has been prepared in one pot by the hydrothermal treatment of the mixture of the clay suspension and the ZrO(NO3)2 solution. The catalytic performances for the CO and CO2 methanation on the catalysts have been investigated at a temperature range from 300 °C to 500 °C at atmospheric pressure. The catalysts and supports have been characterized by X-ray diffraction (XRD), transmittance electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), nitrogen adsorption–desorption, and thermogravimetry and differential thermal analysis (TG-DTA). It is found that the zirconia-modified clays have the typical bimodal pore size distribution. Most of the pores with the sizes smaller than 10 nm are resulted from the zirconia pillared clays and the mesopores with the sizes larger than 10 nm and the macropores with the sizes larger than 50 nm are resulted from the partly damaged clay layers. The bimodal pore structure is beneficial to the dispersion of Ni on the layers of the zirconia-modified clays and the increase in Ni loading. The zirconia nanoparticles are highly dispersed on the partly damaged clay layers. Nickel oxide in cubic phase is the only Ni species that can be detected by XRD. The nickel oxide nanoparticles with the sizes of 12 nanometers or more are well dispersed on the zirconia-modified clay layers, which are observed to be buried in the stack layers of zirconia. The presence of nickel oxide in six different forms could be perceived on the new structure. Five of them except the Ni species that forms the spinel phase with Al in clays can be reduced to the active Ni species for the CO and CO2 methanation. But the activity of the Ni species is different, which is associated with the chemical environment at which the Ni species is located. The catalyst with the higher zirconia content, which also has the larger specific surface area and pore volume, exhibits the better catalytic performance for the CO or CO2 methanation. Zirconia in the catalyst is responsible for the dispersion of the Ni species, and it prevents the metallic Ni nanoparticles from sintering during the process of the reaction. In addition, it is also responsible for the reduction of the inactive carbon deposition. The catalyst with 15 wt.% zirconia content has the highest CO conversion of about 100% and the highest methane selectivity of about 93% at 450 °C for CO methanation, and the catalyst with 20% zirconia content has the CO2 conversion of about 80% and the highest methane selectivity of about 99% for CO2 methanation at 350 °C. The catalyst with 15 wt.% zirconia possesses promising stability and no distinct deactivation could be perceived after reaction for 40 h. This new catalyst has great potential to be used in the conversion of the blast furnace gas (BFG) and the coke oven gas (COG) to methane.  相似文献   

8.
Gold-supported catalysts on alumina and ceria were prepared by means of deposition-precipitation method at different pH and molarity of the precursor solution. The screening at the powder level in a fixed bed micro-reactor of the catalytic activity of the 3% Au prepared catalysts, in terms of CO conversion for the WGS reaction, highlighted that the catalysts on alumina were not so active (maximum conversion of 30%), despite a satisfactory gold deposition on the support. On the contrary, ceria-based catalysts displayed better performances. By feeding only CO and H2O, with H2O/CO ratio equal to 4, catalysts prepared at different pH and M = 1 × 10−3 approached satisfactorily the equilibrium WGS conditions, in particular when pH = 8.5 was used. However, catalytic activity tests carried out with a realistic reformate feed (containing also H2 and CO2) showed fairly low CO conversions also at high temperature. Then, on this catalyst, tests at different weight space velocities WSV were carried out obtaining better performance by lowering WSV.  相似文献   

9.
The wet H2-rich gas was used as reducing gas instead of the H2/N2 gas in the reduction step of the catalyst preparation. It is found that the selectivity for CO methanation over the catalysts 0.4Ni/ZrO2 so-obtained was decreased in comparison to the case of the H2/N2 gas used as reducing gas. Even though, the samples with the different feed atomic ratios of Ni/Zr prepared by the impregnation method and the co-precipitation method, respectively, were evaluated with the wet H2-rich gas both as reducing gas and as reactant gas. The catalysts Ni/ZrO2-CP prepared by the co-precipitation method exhibited a high catalytic activity for CO removal at a lowered reaction temperature with increasing the Ni loading. Over the catalyst 3.0Ni/ZrO2-CP, CO in the reactant gas could be removed to below 10 ppm at reaction temperatures of 220–260 °C with the selectivity higher than 50%. And the selectivity was kept at 100% during the 100 h test at 220 °C. The catalysts were characterized by XRD, XPS, XRF and the adsorption isotherm measurement. In addition, effect of water vapor in reactant gas was studied over the catalysts 0.4Ni/ZrO2 with the wet H2-rich gas and the dry H2-rich gas as reactant gas, respectively, in the case of the H2/N2 gas fixed as reducing gas. It is seen that presence of water vapor in the reactant gas retarded methanation reactions of CO and CO2 on the catalysts.  相似文献   

10.
Production of hydrogen by methanol steam reforming has been studied over a series of Ni/Al layered double hydroxide catalysts prepared by the co-precipitation method, with the aim to develop a stable catalyst that can be used in a membrane-joint performer at temperatures greater than 300 °C. H2, CO and CO2 are generally the major products together with trace amounts of CH4. The presence of potassium and/or sodium cations was found to improve the activity of methanol conversion. The selectivity for CO2 rather than CO was better with K ions than Na ions, especially at higher temperatures (e.g. 390–400 °C). Methanol steam reforming over a K-promoted Ni/Al layered double hydroxide catalyst resulted in better activity and similar stability compared to a commercial Cu catalyst.  相似文献   

11.
For the first time the influence of CO, CO2 and H2O content on the performance of chlorinated NiCeO2 catalyst in selective or preferential CO methanation was studied systematically. It was shown that the rate of CO methanation over Ni(Cl)/CeO2 increases with the increasing H2 concentration, is independent of CO2 concentration and decreases with increasing CO and H2O concentrations; the rate of CO2 methanation is weakly sensitive to H2 and CO2 concentrations and decreases with increasing CO and H2O concentrations. High catalyst selectivity was attributed to Ni surface blockage by strongly adsorbed CO molecules and ceria surface blockage by Cl, which both inhibit CO2 hydrogenation.For the first time, selective CO methanation over Ni(Cl)/CeO2 was studied for deep CO removal from formic acid derived hydrogen-rich gases characterized by high CO2 (40–50 vol%), low CO (30–1000 ppm) content and trace amounts of water. Composite Ni(Cl)/CeO2-η-Al2O3/FeCrAl wire mesh catalyst was demonstrated to be effective for this process at temperatures of 180–220°С, selectivity 30–70%, WHSV up to 200 L (STP)/(g∙h). The catalyst provides high process productivity, low pressure drop, uniform temperature distribution, and appears highly promising for the development of a compact CO cleanup reactor. Selective CO methanation was concluded to be a convenient way to CO-free hydrogen produced by formic acid decomposition.  相似文献   

12.
Combination of the reactions by means of membrane separation techniques are of interest. The CO2 methanation was combined with NH3 decomposition by in situ H2 separation through a Pd membrane. The CO2 methanation reaction in the permeate side was found to significantly enhance the H2 removal rate of Pd membrane compared to the use of sweep gas. The reaction rate of CO2 methanation was not influenced by H2 supply through the Pd membrane in contrast to NH3 decomposition in the retentate side. However, the CH4 selectivity could be improved by using a membrane separation technique. This would be caused by the active dissociated H species which might immediately react with adsorbed CO species on the catalysts to CH4 before those CO species desorbed. From the reactor configuration tests, the countercurrent mode showed higher H2 removal rate in the combined reaction at 673 K compared to the cocurrent mode but the reaction rate in CO2 methanation should be improved to maximize the perfomance of membrane reactor.  相似文献   

13.
Bioethanol was reformed in supercritical water (SCW) at 500 °C and 25 MPa on Ni/Al2O3 and Ni/CeZrO2/Al2O3 catalysts to produce high-pressure hydrogen. The results were compared with non-catalytic reactions. Under supercritical water and in a non-catalytic environment, ethanol was reformed to H2, CO2 and CH4 with small amounts of CO and C2 gas and liquid products. The presence of either Ni/Al2O3 or Ni/CeZrO2/Al2O3 promoted reactions of ethanol reforming, dehydrogenation and decomposition. Acetaldehyde produced from the decomposition of ethanol was completely decomposed into CH4 and CO, which underwent a further water-gas shift reaction in SCW. This led to great increases in ethanol conversion and H2 yield on the catalysts of more than 3-4 times than that of the non-catalytic condition. For the catalytic operation, adding small amounts of oxygen at oxygen to ethanol molar ratio of 0.06 into the feed improved ethanol conversion, at the expense of some H2 oxidized to water, resulting in a slightly lower H2 yield. The ceria-zirconia promoted catalyst was more active than the unpromoted catalyst. On the promoted catalyst, complete ethanol conversion was achieved and no coke formation was found. The ceria-zirconia promoter has important roles in improving the decomposition of acetaldehyde, the enhancement of the water-gas shift as well as the methanation reactions to give an extremely low CO yield and a tremendously high H2/CO ratio. The SCW environment for ethanol reforming caused the transformation of gamma-alumina towards the corundum phase of the alumina support in the Ni/Al2O3 catalyst, but this transformation was slowed down by the presence of the ceria-zirconia promoter.  相似文献   

14.
Dry reforming of methane has been studied over Pt/ZrO2 catalysts promoted with Ce for different temperatures and feed compositions. The influence of the impregnation strategy and the cerium amount on the activity and stability of the catalysts were investigated. The results have shown that introduction of 1 wt.% Ce to the Pt/ZrO2 catalyst via coimpregnation method led to the highest catalytic activity and stability. 1 wt.%Ce–1 wt.%Pt/ZrO2 catalyst prepared by sequential impregnation displayed inferior CH4 and CO2 conversion performances with lowest H2/CO production ratios. 1 wt.%Ce–1 wt.%Pt/ZrO2 catalyst prepared by coimpregnation showed the highest activity even for the feed with high CH4/CO2 ratio. The reason for high activity was explained by the intensive interaction between Pt and Ce phases for coimpregnated sample, which had been verified by X-ray photoelectron spectroscopy and Energy Dispersive X-Ray analyses. Strong and extensive Pt–Ce surface interaction results in an increase in the number of Ce3+ sites and enhances the dispersion of Pt.  相似文献   

15.
《能源学会志》2020,93(1):415-424
The work in this paper evidences the viability of producing synthetic natural gas (SNG) via the methanation reaction tackling two fundamental challenges on methanation catalysis (i) the development of advanced catalysts able to achieve high CO2 conversion and high methane yields and (ii) the unexplored effect of residual methane on the methanation stream. Both challenges have been successfully addressed using Ni/CeO2-ZrO2 catalysts promoted with Mn and Co. Mn does not seem to be a good promoter while Co prevents carbon deposition and secondary reactions. In fact, our Co-doped sample reached high levels of CO2 conversion and CH4 selectivity, especially at low reaction temperatures. In addition, this catalyst exhibits excellent catalytic behaviour when methane is introduced into the gas mixture, indicating its feasibility for further study to be conducted in realistic flue gases environments and methanation units with recycling loops. Furthermore, when methane is introduced in the reactant mixture, the Ni-Co/CeO2-ZrO2 sample is very stable maintaining high levels of conversion and selectivity. Overall our Co-doped catalyst can deliver high purity synthetic natural gas for long-term runs, promising results for gas-phase CO2 conversion units.  相似文献   

16.
New experimental data are reported to demonstrate that a sorption enhanced reaction (SER) concept can be used to directly produce fuel-cell grade H2 (<20 ppm CO) by carrying out the catalytic, endothermic, steam-methane reforming (SMR) reaction (CH4 + 2H2O ↔ CO2 + 4H2) in presence of a CO2 selective chemisorbent such as K2CO3 promoted hydrotalcite at reaction temperatures of 520 and 550 °C, which are substantially lower than the conventional SMR reaction temperatures of 700-800 °C. The H2 productivity of the sorption enhanced reactor can be large, and the conversion of CH4 to H2 can be very high circumventing the thermodynamic limitations of the SMR reaction due to the application of the Le Chetalier's principle in the SER concept. Mathematical simulations of a cyclic two-step SER concept showed that the H2 productivity of the process (moles of essentially pure H2 produced per kg of catalyst-chemisorbent admixture in the reactor per cycle) is much higher at a reaction temperature of 590 °C than that at 550 or 520 °C. On the other hand, the conversion of feed CH4 to high purity H2 product is relatively high (>99+%) at all three temperatures. The conversion is much higher than that in a conventional catalyst-alone reactor at these temperatures, and it increases only moderately (<1%) as the reaction temperature is increased from 520 to 590 °C. These results are caused by complex interactions of four phenomena. They are (a) favorable thermodynamic equilibrium of the highly endothermic SMR reaction at the higher reaction temperature, (b) faster kinetics of SMR reaction at higher temperatures, (c) favorable removal of CO2 from the reaction zone at lower temperatures, and (d) higher cyclic working capacity for CO2 chemisorption at higher temperature.  相似文献   

17.
H2 was produced from aluminum/water reaction and reacted with CO2 over Ni and Rh based catalysts to optimize the process conditions for CO2 methanation at moderate temperature. Monometallic catalysts were prepared by incorporating Ni and Rh using nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and rhodium(III) chloride trihydrate (RhCl3·3H2O)as a precursor chemical. The preliminary study of the catalysts revealed higher activity and CH4 selectivity for Rh based catalyst compared to that of Ni based catalyst. Further, Rh based catalyst was investigated using response surface methodology (RSM) involving central composite design. The quadratic model was employed to correlate the effects of variable parameters including methanation temperature, %humidity, and catalyst weight with the %CO2 conversion, %CH4 selectivity, and CH4 production capacity. Analysis of variance revealed that methanation temperature and humidity play an important role in CO2 methanation. Higher response values of CO2 conversion (54.4%), CH4 selectivity (73.5%) and CH4 production capacity (8.4 μmol g?1 min?1) were noted at optimum conditions of 206.7°C of methanation temperature, 12.5% humidity and 100 mg of the catalyst. The results demonstrated the ability of Rh catalyst supported on palm shell activated carbon (PSAC) for CO2 methanation at low temperature and atmospheric pressure.  相似文献   

18.
A novel nickel catalyst supported on Al2O3@ZrO2 core/shell nanocomposites was prepared by the impregnation method. The core/shell nanocomposites were synthesized by depositing zirconium species on boehmite nanofibres. This contribution aims to study the effects of the pore structure of supports and the zirconia dispersed on the surface of the alumina nanofibres on the CO methanation. The catalysts and supports were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), nitrogen adsorption–desorption, and thermogravimetry and differential thermal analysis (TG-DTA). The catalytic performance of the catalysts for CO methanation was investigated at a temperature range from 300 °C to 500 °C. The results of the characterization indicate that the metastable tetragonal zirconia could be stably and evenly dispersed on the surface of alumina nanofibres. The interlaced nanorods of the Al2O3@ZrO2 core/shell nanocomposites resulted in a macropore structure and the spaces between the zirconia nanoparticles dispersed on the alumina nanofibres formed most of the mesopores. Zirconia on the surface of the support promoted the dispersion and influenced the reduction states of the nickel species on the support, so it prevented the nickel species from sintering as well as from forming a spinel phase with alumina at high temperatures, and thus reduced the carbon deposition during the reaction. With the increase of the zirconia content in the catalyst, the catalytic performance for the CO methanation was enhanced. The Ni/Al2O3@ZrO2-15 exhibited the highest CO conversion and methane selectivity at 400 °C, but they decreased dramatically above or below 400 °C due to the temperature sensitivity of the catalyst. Ni/Al2O3@ZrO2-30 exhibited a high and constant rate of methane formation between 350 °C and 450 °C. The excellent catalytic performance of this catalyst is attributed to its reasonable pore structure and good dispersion of zirconia on the support. This catalyst has great potential to be further studied for the future industrial use.  相似文献   

19.
The drastic effects associated with climate changes, mainly induced by the increasing carbon emissions, challenge our modern society and mandate immediate solutions. This requires in the first place, accelerating the introduction of green alternatives for the standing carbon-based energy technologies, and simultaneously increasing the contribution of the carbon-free renewables to our energy sector. Among a few catalytic processes, the methanation of carbon oxides is currently envisaged as a cornerstone in the renewable energy concepts. On one hand, the methanation of CO is intensively studied for ultra-purification of reforming-generated hydrogen feed gases used in the low-temperature hydrogen fuel cells and in the production of ammonia. This involves the selective methanation of CO in CO2-rich H2 fuels to lower CO concentration from about 5000 ppm down to <5 ppm. The other major application involves the solo or the total methanation of CO and CO2. This involves the conversion of syngas or the methanation of air-captured CO2 using green hydrogen produced from renewable energies (power-to-gas). These aspects revive the importance of Sabatier reactions and presents them as an essential part of the cycle of renewable-energy applications. In this review, we will focus on the recent advancements of the methanation of CO and CO2 on oxide supported Ni and Ru catalysts in the frame of their use in the abovementioned applications. After an overview of different catalytic processes related to hydrogen production, we will basically concentrate on the structure-reactivity relationships of CO and CO2 methanation in different applications, highlighting limitations and advantages of different catalytic systems. Basically, we will map out the interplay of different electronic and structural features and correlate them to the catalytic performance for CO and CO2 methanation. This includes the discussion of metal particle size effect, nature of the support, and the effect of reaction gas atmospheres. Clarifying the interplay of these parameters will help us to further understand the metal-support interaction (MSI) based on structural (SMSIs) and electronic (EMSIs) aspects which is essential for steering the catalytic performance of these catalysts for a specific reaction pathway.  相似文献   

20.
The CO2 methanation is an effective strategy for making full use of waste gases and converting them into valuable chemicals. Nowadays, the key challenge is the design of efficient catalysts to enhance low-temperature catalytic performance. A series of hydrotalcite-derived catalysts with tunable metal species were prepared by hydrothermal synthesis method for CO2 methanation at low-temperature. It was found that suitable synergistic effect between metallic Ni and basic sites in the support could be achieved by regulating the metal composition of hydrotalcite-derived catalysts. The NiMgAl catalyst exhibited the highest catalytic activity with CO2 conversion of 91.8% at 250 °C. The in situ DRIFTS measurements and DFT calculation further revealed that the alkaline metal oxide MgO and more Ni(111) active sites in the NiMgAl catalyst could promote the activation of CO2 and the formation of active intermediates, which actively participated in improving low-temperature activity. Therefore, the ternary mixed oxides catalyst derived from LDHs precursors shows a potential strategy in achieving excellent catalytic properties for CO2 methanation at low-temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号