首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For hydrogen to become a serious contender for replacing fossil fuels, the manufacturing thereof has to be further investigated. One such process, the membrane based Hybrid Sulfur (HyS) process, where hydrogen is produced from the electrolysis of SO2, has received considerable interest recently. Since H2SO4 is formed during SO2 electrolysis, H2SO4 stability is a prerequisite for any membrane to be used in this process. In this study, pure as well as blended polybenzimidazole (PBI), partially fluorinated poly(arylene ether) (sFS) and nonfluorinated poly(arylene ethersulfone) (sPSU) membranes were investigated in terms of their acid stability as a function of acid concentration. Membranes were characterized using weight change, TGA, GPC, SEM/EDX and IEC. While a general stability was observed at 30 and 60 wt% H2SO4, the blended sFS-PBI and sPSU-PBI showed the highest stability throughout. According to the VI curve obtained for the SO2 electrolysis, the sPSU-PBI blend membrane performed slightly better than Nafion®117.  相似文献   

2.
The effect of H2O2 on the Pt dissolution in 0.5 mol dm−3 H2SO4 was investigated using an electrochemical quartz crystal microbalance (EQCM). For the potential cycling at 50 mV s−1, the Pt weight irreversibly decreases in a N2 atmosphere with H2O2, while only a negligible Pt weight-loss is observed in the N2 and O2 atmospheres without H2O2. The EQCM data measured by the potential step showed that the Pt dissolution in the presence of H2O2 depends on the electrode potential and the H2O2 concentration. For the stationary electrolysis, the Pt dissolution occurs at 0.61–1.06 and 1.06–1.36 V vs. RHE. It should be noted that the Pt dissolution phenomenon in the presence of H2O2 is also affected by the potential scanning time. Based on these results, H2O2 is considered not only to contribute to the formation of Pt-oxide causing the cathodic Pt dissolution, but also to participate in the anodic Pt dissolution and the chemical Pt dissolution.  相似文献   

3.
The influence of sulfuric acid concentration on negative plate performance has been studied on 12 V/32 Ah lead-acid batteries with three negative and four positive plates per cell, i.e. the negative active material limits battery capacity. Initial capacity tests, including C20 capacity, cold cranking ability and Peukert tests, have been carried out in a wide range of sulfuric acid concentrations (from 1.18 to 1.33 sp.gr.). High initial capacity and good CCA performance were registered for batteries with acid concentration between 1.24 and 1.30 sp.gr. The charge acceptance depends on acid concentration as well as on battery state of charge. Batteries with high SoC exhibit high charge acceptance at low acid concentrations. The cycle life tests at two discharge rates (10 and 3 h discharge) evidence that sulfuric acid concentration exerts a strong effect on negative plate performance. The cycle life of batteries decreases with increase of acid concentration. The obtained results demonstrate the high impact of lead sulfate solubility on the cycle life and charge efficiency of lead-acid batteries.  相似文献   

4.
Thermal decomposition of (NH4)2SO4 in presence of Mn3O4   总被引:1,自引:0,他引:1  
The main objective of this work is to develop a hybrid water-splitting cycle that employs the photon component of sunlight for production of H2 and its thermal (i.e. IR) component for generating oxygen. In this paper, (NH4)2SO4 thermal decomposition in the presence of Mn3O4, as an oxygen evolving step, was systematically investigated using thermogravimetric/differential thermal analyses (TG/DTA), temperature programmed desorption (TPD) coupled with a mass spectrometer (MS), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS) techniques. Furthermore, thermolysis of ammonium sulfate, (NH4)2SO4, in the presence of Mn3O4 was also investigated by conducting flow reactor experiments. The experimental results obtained indicate that at 200-450 °C, (NH4)2SO4 decomposes forming NH3 and H2O and sulfur trioxide that in the presence of manganese oxide react to form manganese sulfate, MnSO4. At still higher temperatures (800∼900 °C), MnSO4 further decomposed forming SO2 and O2.  相似文献   

5.
The hybrid sulfur thermochemical cycle has been proposed as a means to produce efficiently massive quantities of clean hydrogen using a high-temperature heat source like nuclear or solar. The cycle consists of two steps, one of which is electrolytic. The reversible cell potential for this step and, hence, the resulting operating potential will depend on the concentrations of dissolved SO2 and sulfuric acid at the electrode. To understand better how these are related as functions of temperature and pressure, an Aspen Plus phase equilibrium model using the OLI Mixed Solvent Electrolyte physical properties method was employed to determine the activities of the species present in the system. These activities were used in conjunction with the Nernst equation to determine the reversible cell potential as a function of sulfuric acid concentration, temperature and pressure. A significant difference between the reversible and actual cell potentials was found, suggesting that there may be considerable room for reducing the operating potential.  相似文献   

6.
Pt electrode dissolution has been investigated using an electrochemical quartz crystal microbalance (EQCM) in H2O2-containing 0.5 mol dm−3 H2SO4. The Pt electrode weight-loss of ca. 0.4 μg cm−2 is observed during nine potential sweeps between 0.01 and 1.36 V vs. RHE. In contrast, the Pt electrode weight-loss is negligible without H2O2 (<0.05 μg cm−2). To support the EQCM results, the weight-decrease amounts of a Pt disk electrode and amounts of Pt dissolved in the solutions were measured after similar successive potential cycles. As a result, these results agreed well with the EQCM results. Furthermore, the H2O2 concentration dependence of the Pt weight-decrease rate was assessed by successive potential steps. These EQCM data indicated that the increase in H2O2 accelerates the Pt dissolution. Based on these results, H2O2 is known to be a major factor contributing to the Pt dissolution.  相似文献   

7.
Correlations for the laminar burning velocity of premixed CH4/H2/O2/N2 mixtures were developed using the method of High Dimensional Model Representation (HDMR). Based on experiment data over a wide range of conditions reported in the literature, two types of HDMR correlation (i.e. global and piecewise HDMR correlations) were obtained. The performance of these correlations was assessed through comparison with experimental results and the correlation reported in the literature. The laminar burning velocity predicted by the piecewise HDMR correlations was shown to agree very well with those from experiments. Therefore, the piecewise HDMR correlations can be used as an effective replacement for the full chemical mechanism when the prediction of the laminar burning velocity is needed in certain combustion modeling.  相似文献   

8.
The effect of H2O on carbon-coated LiFePO4 particles was investigated by chemical analysis, structural analysis (X-ray diffraction, SEM, TEM), optical spectroscopy (FTIR, Raman) and magnetic measurements. Upon immersion in water, part of the product floats while the main part sinks. Both the floating and the sinking part have been analyzed. We find that the floating and sinking part only differ by the amount of carbon that partly detaches from the particles upon immersion in water. Exposure to H2O results in rapid attack, within minutes, of the surface layer of the particles, because the particles are no longer protected by carbon. The deterioration of the carbon coat is dependent on the synthesis process, either hydrothermal or solid-state reaction. In both cases, however, the carbon coat is permeable to water and fails to protect the surface of the LiFePO4 particles. The consequence is that this immersion results in the chemical attack of LiFePO4, but is restricted to the surface layer of the particles (few nanometers-thick). In case the particles are simply exposed to humid air, the carbon coat protects the particles more efficiently. In this case, the exposure to H2O mainly results in the delithiation of the surface layer, due to the hydrophilic nature of Li, and only the surface layer is affected, at least for a reasonable time of exposure to humid air (weeks). In addition, within this timescale, the surface layer can be chemically lithiated again, and the samples can be dried to remove the moisture, restoring the reversible electrochemical properties.  相似文献   

9.
An all silica DDR (deca dodecasil rhombohedral) zeolite membrane with dense, interlocked structure has been developed for separation of H2 from HI/I2 mixture of HI decomposition reaction. In this work, the DDR zeolite membrane was synthesized on the seeded clay-alumina substrate within 5 days. The seeds were synthesized by sonication mediated hydrothermal process within short crystallization time which enhanced the nucleation for the membrane growth. The synthesized membranes along with seed crystals were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field emission scanning electron microscope (FESEM) and energy dispersive X-ray spectroscopy (EDAX). The selectivity of hydrogen with respect to CO2 and Ar was evaluated by single gas permeation studies at room temperature. The tests for corrosion resistance were carried out upto 120 h with both support and DDR membrane at 130 °C which confirmed the stability of membrane under the harsh HI/I2 environment.  相似文献   

10.
In the present study, the composite polyetherimide (PEI) membrane coated with poly dimethyl siloxane (PDMS) was synthesized and optimum conditions of coating were obtained for separation of hydrogen from methane. Three coating techniques “pouring solution inclined by 45°”, “film casting” and “dip-coating” were used. The effect of sequential coating for different methods on permselectivity of the membranes was investigated. In addition, the influences of coating conditions including coating solution concentration, coating and curing temperatures were examined. The results showed that when the concentration of PDMS coating solution was increased; the permeance of H2 was initially declined rapidly and was then gradually leveled off. The optimum concentration of coating solution was 15 wt.%. The examination of the curing and coating temperatures showed no significant effect on H2 permeance and selectivity. In the “dip coating” method, two times coating showed superior permeance and selectivity and in “film casting”, the performance of triple coating was promising. Higher selectivities for the composite membrane prepared by “dip-coating” introduced this method as the best method. The sequential dip-coating with different PDMS concentrations was applied and the selectivity was enhanced significantly from 26 to 96 for pure gases and from 22 to 70 for the binary gas mixture. Finally, the influence of pressure on the separation performance of the fabricated membrane was investigated.  相似文献   

11.
The effect of CO2 reactivity on CH4 oxidation and H2 formation in fuel-rich O2/CO2 combustion where the concentrations of reactants were high was studied by a CH4 flat flame experiment, detailed chemical analysis, and a pulverized coal combustion experiment. In the CH4 flat flame experiment, the residual CH4 and formed H2 in fuel-rich O2/CO2 combustion were significantly lower than those formed in air combustion, whereas the amount of CO formed in fuel-rich O2/CO2 combustion was noticeably higher than that in air. In addition to this experiment, calculations were performed using CHEMKIN-PRO. They generally agreed with the experimental results and showed that CO2 reactivity, mainly expressed by the reaction CO2 + H → CO + OH (R1), caused the differences between air and O2/CO2 combustion under fuel-rich condition. R1 was able to advance without oxygen. And, OH radicals were more active than H radicals in the hydrocarbon oxidation in the specific temperature range. It was shown that the role of CO2 was to advance CH4 oxidation during fuel-rich O2/CO2 combustion. Under fuel-rich combustion, H2 was mainly produced when the hydrocarbon reacted with H radicals. However, the hydrocarbon also reacted with the OH radicals, leading to H2O production. In fact, these hydrocarbon reactions were competitive. With increasing H/OH ratio, H2 formed more easily; however, CO2 reactivity reduced the H/OH ratio by converting H to OH. Moreover, the OH radicals reacted with H2, whereas the H radicals did not reduce H2. It was shown that OH radicals formed by CO2 reactivity were not suitable for H2 formation. As for pulverized coal combustion, the tendencies of CH4, CO, and H2 formation in pulverized coal combustion were almost the same as those in the CH4 flat flame.  相似文献   

12.
Cu2ZnSnS4 (CZTS) thin films prepared by a non-vacuum process based on the sulfurization of precursor coatings, consisting of a sol-gel solution of Cu, Zn, and Sn, under H2S+N2 atmosphere were investigated. The structure, microstructure, and electronic properties of the CZTS thin films as well as solar cell parameters were studied in dependence on the H2S concentration. The sulfurization process was carried out at 500 °C for 1 h in an H2S+N2 mixed-gas atmosphere with H2S concentrations of 3%, 5%, 10%, and 20%. As the H2S concentration decreased from 20% to 5%, the S content of the CZTS thin films decreased. However, when the H2S concentration was decreased below 3%, the S content of the films began to increase. A CZTS thin film prepared with an H2S concentration of 3% had grains in the order of 1 μm in size, which were larger than those of films prepared at other H2S concentrations. Furthermore, the most efficient solar cell, with a conversion efficiency of 2.23%, was obtained from a sample sulfurized at an H2S concentration of 3%.  相似文献   

13.
Polydimethylsiloxane (PDMS) composites with different weight amounts of multi-walled carbon nanotubes (MWCNT) were synthesised as membranes to evaluate their gas separation properties. The selectivity of the membranes was investigated for the separation of H2 from CH4 gas species. Membranes with MWCNT concentrations of 1% increased the selectivity to H2 gas by 94.8%. Furthermore, CH4 permeation was almost totally blocked through membranes with MWCNT concentrations greater than 5%. Vibrational spectroscopy and X-ray photoelectron spectroscopy techniques revealed that upon the incorporation of MWCNT a decrease in the number of available Si–CH3 and Si–O bonds as well as an increase in the formation of Si–C bonds occurred that initiated the reduction in CH4 permeation. As a result, the developed membranes can be an efficient and low cost solution for separating H2 from larger gas molecules such as CH4.  相似文献   

14.
The gas permeability of H2S gas at 150 °C through ultra-thin cesium hydrogen sulfate (CsHSO4) membranes has been investigated. Gas chromatography–mass spectrometry analyses indicate that CsHSO4 membrane is impermeable to H2S gas under test conditions. The apparent micropore diameter of the membrane averaged between 9.5 and 11.5 Å with a maximum permeance of 0.09 Barrer (6.75 × 10−19 m2 s−1 Pa−1). Atomic force microscope and X-ray diffraction analyses show respectively that the surface morphology and crystal structure of the membranes are preserved, with no adverse effect from prolonged exposure to H2S gas. Electrochemical impedance spectroscopy analysis confirm over a 30% decrease in membrane resistance via an 80% reduction in membrane thickness.  相似文献   

15.
Lithium aluminum hydride (LiAlH4) is considered as an attractive candidate for hydrogen storage owing to its favorable thermodynamics and high hydrogen storage capacity. However, its reaction kinetics and thermodynamics have to be improved for the practical application. In our present work, we have systematically investigated the effect of NiCo2O4 (NCO) additive on the dehydrogenation properties and microstructure refinement in LiAlH4. The dehydrogenation kinetics of LiAlH4 can be significantly increased with the increase of NiCo2O4 content and dehydrogenation temperature. The 2 mol% NiCo2O4-doped LiAlH4 (2% NCO–LiAlH4) exhibits the superior dehydrogenation performances, which releases 4.95 wt% H2 at 130 °C and 6.47 wt% H2 at 150 °C within 150 min. In contrast, the undoped LiAlH4 sample just releases <1 wt% H2 after 150 min. About 3.7 wt.% of hydrogen can be released from 2% NCO–LiAlH4 at 90 °C, where total 7.10 wt% of hydrogen is released at 150 °C. Moreover, 2% NCO–LiAlH4 displayed remarkably reduced activation energy for the dehydrogenation of LiAlH4.  相似文献   

16.
ZnIn2S4/CdIn2S4 composite photocatalysts (x = 0–1) were successfully synthesized via a hydrothermal route. Compositions of ZnIn2S4/CdIn2S4 composite photocatalysts were optimized according to the photocatalytic H2 evolution rate. XRD patterns indicate the as-prepared samples are mixtures of hexagonal and cubic structures. FESEM and TEM images show that the as-prepared samples are composed of flower-like microspheres with wide distribution of diameter. There is obviously distinguishing distribution of Zn, Cd elements among the composite architectures. UV–vis absorption spectra of different compositions exhibit that absorption edges of ZnIn2S4/CdIn2S4 composites slightly move towards longer wavelengths with the increment of CdIn2S4 component. A typical time course of photocatalytic H2 evolution from an aqueous Na2SO3 and Na2S solution over unloaded and PdS-loaded ZnIn2S4/CdIn2S4 composite photocatalyst is carried out. The initial activity for H2 evolution over 0.75 wt% PdS-loaded sample is up to 780 μmol h−1. And the activity of unloaded sample also reaches 490 μmol h−1 with consistent stability.  相似文献   

17.
This paper reports synthesis of Mn-ferrite using sol-gel technique, which involved the addition of Mn and Fe salts in ethanol followed by gelation using propylene oxide (PO). As-prepared gels were aged, dried and calcined rapidly upto different temperatures of 600 °C–900 °C and quenched in air. Calcined powders obtained were analyzed using x-ray diffraction, BET surface area analyzer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The gels calcined rapidly upto 600 °C and quenched in air resulted into a phase pure Mn-ferrite with porous/nanoparticle morphology and higher SSA. The H2 generation ability of the calcined powder was investigated by performing multiple thermochemical cycles in the Inconel packed bed reactor. In addition, the effects of several process parameters such as water-splitting temperature (Tws), regeneration temperature (Treg), regeneration time (treg) and volumetric flow rate of water (vo) on H2 generation ability of Mn-ferrite were investigated in detail.  相似文献   

18.
A new oxy-fuel H2 generation process with CO2 avoidance is provided. The process utilizes mass recirculation of CO and H2O to the oxyforming reactor. A comparison between non-recirculating and mass-recirculating oxyforming reactor operation is given. Main benefits of mass recirculation are emphasized. The oxyforming reactor is integrated with the H2 and CO2 separators, fuel cell and O2 generator. In the process C/O is equal to 0.5 while C/H determines the temperature level in the reactor. The reaction system includes combustion, steam reforming and water–gas shift reactions. The oxyforming process is found to be mass transport controlled with O2 as the limiting reactant. It is emphasized that under MR conditions the decomposition of H2/CO2 by water–gas shift reaction is suppressed by means of CO/H2O-enrichment and hence MR conditions allow for higher temperatures beneficial to endothermic steam reforming reaction. Under MR conditions the thermodynamic equilibrium limits are overcome and all reactions are forced to proceed to the completion which enables 100% selectivities to H2 and CO2. The effects of operation parameters such as temperature, flow rate, pressure and composition are examined. The derived S-terms enable for the concise interpretation of the effect of pressure on the concentration gradients transverse to the flow. The consistent control algorithm of the oxyforming reactor is provided.  相似文献   

19.
By combining organic polymers normally used to make membrane filters with inorganic substances, multi-walled carbon nanotube (MWCNTs), an extraordinary ability to separate H2 from CH4 was developed in this study. A series of MWCNTs/PBNPI nanocomposite membrane with a nominal MWCNTs content between 1 and 15 wt% were prepared by solution casting method, in which the very fine MWCNTs were embedded into glassy polymer membrane. Detailed characterizations, such as morphology, thermal stability and crystalline structure have been conducted to understand the structures, composition and properties of nanocomposite membranes. The results found that this new class of membrane had increased permeability and enhanced selectivity, and a useful ability to filter gases and organic vapours at the molecular level.  相似文献   

20.
The structure of (NH4)2B10H10 (1) was determined through powder XRD analysis. The thermal decomposition of 1 and (NH4)2B12H12 (2) was examined between 20 and 1000 °C using STMBMS methods. Between 200 and 400 °C a mixture of NH3 and H2 evolves from both compounds; above 400 °C only H2 evolves. The dihydrogen bonding interaction in 1 is much stronger than that in 2. The stronger dihydrogen bond in 1 resulted in a significant reduction by up to 60 °C, but with a corresponding 25% decrease in the yield of H2 in the lower temperature region and a doubling of the yield of NH3. The decomposition of 1 follows a lower temperature exothermic reaction pathway that yields substantially more NH3 than the higher temperature endothermic pathway of 2. Heating of 1 at 250 °C resulted in partial conversion of B10H102− to B12H122−. Both 1 and 2 form an insoluble polymeric material after decomposition. The elements of the reaction network that control the release of H2 from the B10H102− can be altered by conducting the experiment under conditions in which pressures of NH3 and H2 are either near, or away from, their equilibrium values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号