首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of a ternary Er(DBM)3phen complex (DBM = dibenzoylmethane; phen = 1,10‐phenanthroline) and its in‐situ synthesis via a sol–gel process are reported. The infrared (IR), diffuse reflectance (DR), and fluorescence spectra of the pure complex and the Er3+/DBM/phen co‐doped luminescent hybrid gel, formed via an in‐situ method (ErDP gel), have been investigated. The results reveal that the erbium complex is successfully synthesized in situ in the ErDP gel. Excitation at the maximum absorption wavelength of the ligands resulted in the typical near‐IR luminescence (centered at around 1.54 μm) resulting from the 4I13/24I15/2 transition of the Er3+ ion, which contributes to the efficient energy transfer from the ligands to the Er3+ ion in both the Er(DBM)3phen complex and the ErDP gel (an antenna effect). The full width at half maximum (FWHM) centered at 1541 nm in the emission spectrum of the ErDP gel is 72 nm, which has potential for optical‐amplification applications. Further theoretical analysis on the Er3+ ion in the ErDP gel shows that it appears to be a promising candidate for tunable lasers and planar optical amplifiers.  相似文献   

2.
A series of stable and inert complexes with ErIII cores and dendritic PtII‐porphyrin ligands exhibit strong near‐IR (NIR) emission bands via highly efficient energy transfer from the excited triplet state of the PtII‐porphyrin ligand to Er3+ ions. The NIR emission intensity of thin films of ErIII complexes at 1530 nm, originating from 4f–4f electronic transitions from the first excited state (4I13/2) to the ground state (4I15/2) of the Er3+ ion, is dramatically enhanced upon increasing the generation number (n) of the aryl ether dendrons because of site‐isolation and light‐harvesting (LH) effects. Attempts are made to distinguish the site‐isolation effect from the LH effect in these complexes. Surprisingly, the site‐isolation effect is dominant over the LH effect in the Er3+‐[Gn‐PtP]3(terpy) (terpy: 2,2′:6′,2″‐terpyridine) series of complexes, even though the present dendrimer systems with ErIII cores have a proper cascade‐type energy gradient. This might be due to the low quantum yield of the aryl ether dendrons. Thus, the NIR emission intensity of Er3+‐[G3‐PtP]3(terpy) is 30 times stronger than that of Er3+‐[G1‐PtP]3(terpy). The energy transfer efficiency between the PtII‐porphyrin moiety in the dendritic PtII‐porphyrin ligands and the Ln3+ ion increases with increasing generation number of the dendrons from 12–43 %. The time‐resolved luminescence spectra in the NIR region show monoexponential decays with a luminescence lifetime of 0.98 μs for Er3+‐[G1‐PtP]3(terpy), 1.64 μs for Er3+‐[G2‐PtP]3(terpy), and 6.85 μs for Er3+‐[G3‐PtP]3(terpy) in thin films of these complexes. All the ErIII‐cored dendrimer complexes exhibit excellent thermal stability and photostability, and possess good solubility in common organic solvents.  相似文献   

3.
A study of selectively excited photoluminescence (PL) at ∼ 6K in Er-im planted GaN as a function of annealing temperature (400–1000°C) has detected nine different Er3+ centers with distinct ∼ 1540 nm 4I13/24I15/2 Er3+ PL spectra and different activation temperatures. However, most of the optically active implanted Er atoms are incorporated at annealing temperatures as low as 400°C on a single type of center for which PL can only be excited efficiently by direct intra-4f shell absorption and is not strongly pumped by either above-gap or broad-band below-gap absorption. This strongly suggests that this high-concentration Er3+ center is an isolated, isoelectronic center consistent with Er3+ substituted on a Ga site. In contrast, a very small fraction of the Er atoms that form a variety of Er-defect/impurity complexes dominate the Er3+ emission spectra excited by above-gap and broad-band below-gap absorption because of their larger cross sections for both carrier capture and optical absorption.  相似文献   

4.
Sharp erbium-related intra-4f shell luminescence from Er doped GaAs and Al0.4Ga0.6 As epitaxial layers grown by molecular beam epitaxy (MBE) is presented. The emission arising from the two Er3+ excited states,4I13/2 and4I11/2 are studied. We have observed, by means of heat treatment under differentambients such as As, Ga and Al over pressure, that the optically active Er3+ preferentially occupies a Column III lattice site or Column III related defects. The photoluminescence results of co-doping Al0.4Ga0.6As:Er with Si and Be by MBE is also reported for the first time. A strong single 1.54 μm spontaneous emission line is achieved by co-doping with Be (≈1×1018 cm−3). This improvement is a result of successfully eliminating or suppressing the other transitions without sacrificing the 1.54 μm emission intensity or linewidth.  相似文献   

5.
《Optical Fiber Technology》2013,19(5):507-513
To improve the 1.53 μm band emission of Er3+, the trivalent Yb3+ ions were introduced into the Er3+ single-doped tellurite glass with composition of TeO2–ZnO–La2O3, a potential gain medium for Er3+-doped fiber amplifier (EDFA). The improved effects were investigated from the measured 1.53 μm band and visible band spontaneous emission spectra together with the calculated 1.53 μm band stimulated emission (signal gain) spectra under the excitation of 975 nm laser diode (LD). It was found that Yb3+/Er3+ co-doping scheme can remarkably improve the visible band up-conversion and the 1.53 μm band fluorescence emission intensity, and meanwhile improves the 1.53 μm band signal gain to some extent, which were attributed to the result of the effective energy transfer of Yb3+:2F5/2 + Er3+:4I15/2  Yb3+:2F7/2 + Er3+:4I11/2. The quantitative study of energy transfer mechanism was performed and microscopic energy transfer parameters between the doped rare-earth ions were determined. In addition, the spectroscopic properties of Er3+ were also investigated from the measured absorption spectrum according to the Judd–Ofelt theory, and the structure behavior and thermal stability of the prepared tellurite glass were analyzed based on the X-ray diffraction (XRD) and differential scanning calorimeter (DSC) measurements, respectively.  相似文献   

6.
1.6 µm emission originated from Pr3+: (3F3, 3F4) → 3H4 transition in Pr3+‐ and Pr3+/Er3+‐doped selenide glasses was investigated under an optical pump of a conventional 1480 nm laser diode. The measured peak wavelength and full‐width at half‐maximum of the fluorescent emission are ~1650 nm and ~120 nm, respectively. A moderate lifetime of the thermally coupled upper manifolds of ~212 ± 10 µs together with a high stimulated emission cross‐section of ~(3 ± 1)×10??20 cm2 promises to be useful for 1.6 µm band fiber‐optic amplifiers that can be pumped with an existing high‐power 1480 nm laser diode. Codoping Er3+ enhances the emission intensity by way of a nonradiative Er3+: 4I13/2 → Pr3+: (3F3, 3F4) energy transfer. The Dexter model based on the spectral overlap between donor emission and acceptor absorption describes well the energy transfer from Er3+ to Pr3+ in these glasses. Also discussed in this paper are major transmission loss mechanisms of a selenide glass optical fiber.  相似文献   

7.
Near-infrared (NIR) light-emitting diodes (LEDs) light sources are desirable in photonic, optoelectronic, and biological applications. However, developing broadband red and NIR-emitting phosphors with good thermal stability is always a challenge. Herein, the synthesis of Eu2+-activated SrY2O4 red phosphor with high photoluminescence quantum efficiency and broad emission band ranging from 540 to 770 nm and peaking at 620 nm under 450 nm excitation is designed. Sr/Ba substitution in SrY2O4:Eu2+ has been further utilized to achieve tunable emission by modifying the local environment, which facilitates the giant red-shifted emission from 620 to 773 nm while maintaining the outstanding thermal stability of SrY2O4:Eu2+. The NIR emission is attributed to the enhanced Stokes shift and crystal field strength originated from the local structural distortions of [Y1/Eu1O6] and [Y2/Eu2O6]. The investigation in charge distribution around Y/Eu provides additional insight into increasing covalency to tune the emission toward the NIR region. As-fabricated NIR phosphor-converted LEDs demonstration shows its potential in night-vision technologies. This study reveals the NIR luminescence mechanism of Eu2+ in oxide-based hosts and provides a design principle for exploiting Eu2+-doped NIR phosphors with good thermal stability.  相似文献   

8.
《Optical Fiber Technology》2006,12(2):185-195
Tellurite fibers with 7500 ppm Er3+ concentration and diverse 2500–15,000 ppm Tm3+ concentrations were manufactured, and their amplified spontaneous emission (ASE) intensities 1550 nm band around were obtained for 980 and 790 nm pump laser. Maxima 187 nm bandwidth at −3 dB points using Er3+–Tm3+ co-doped tellurite optical fibers pumping at 790 nm was obtained, and energy transfer (ET) process between 4I13/2 Er3+ and 3F4 Tm3+ levels related with the amplifier quantum efficiency was studied from experimental and calculated lifetime.  相似文献   

9.
Er and O co-doped Si structures have been prepared using molecular-beam epitaxy (MBE) with fluxes of Er and O obtained from Er and silicon monoxide (SiO) evaporation in high-temperature cells. The incorporation of Er and O has been studied for concentrations of up to 2×1020 and 1×1021 cm−3, respectively. Surface segregation of Er can take place, but with O co-doping the segregation is suppressed and Er-doped layers without any indication of surface segregation can be prepared. Si1−xGex and Si1−yCy layers doped with Er/O during growth at different substrate temperatures show more defects than corresponding Si layers. Strong emission at 1.54 μm associated with the intra-4f transition of Er3+ ions is observed in electroluminescence (EL) at room temperature in reverse-biased p–i–n-junctions. To optimize the EL intensity we have varied the Er/O ratio and the temperature during growth of the Er/O-doped layer. Using an Er-concentration of around 1×1020 cm−3 we find that Er/O ratios of 1 : 2 or 1 : 4 give higher intensity than 1 : 1 while the stability with respect to breakdown is reduced for the highest used O concentrations. For increasing growth temperatures in the range 400–575°C there is an increase in the EL intensity. A positive effect of post-annealing on the photoluminescence intensity has also been observed.  相似文献   

10.
Phase relations in Cu-RO1.5-O(R < Ho,Er,Yb) ternary systems at 1273K have been established by isothermal equilibration of samples containing different ratios of Cu:R(R < Ho,Er,Yb) in flowing air or high purity argon atmosphere for four days. The samples were then rapidly cooled to ambient temperature and the coexisting phases were identified by powder x-ray diffraction analysis. Only one ternary oxide, Cu2R2O5(R < Ho,Er,Yb) was found to be stable. The chemical potential of oxygen for the coexistence of the three phase assemblage, Cu2O + R2O3 + Cu2R2O5(R < Ho,Er,Yb) has been measured by employing the solid-state galvanic cells,< (−) Pt, Cu2O + Ho2O3+ Cu2Ho2O5//CSZ//Air (Po2< 2.12 × 104 Pa), Pt (+) (−) Pt, Cu2O + Er2O3+ Cu2Er2O//CSZ//Air (Po2< 2.12 × 104 Pa), Pt (+) (−) Pt, Cu2O + Yb2O3 + Cu2Yb2O5//CSZ//Air (Po2 < 2.12 × 104 Pa), Pt (+) in the temperature range of 1000 to 1325K. Combining the measured emf of the above cells with the chemical potential of oxygen at the reference electrode, using the Nernst relationship, gives for the reactions, 2Cu2O(s) + 2Ho2O3(s) + O2(g) → 2Cu2Ho2O5(s) (1) 2Cu2O(s) + 2Er2O3(s) + O2(g) → 2Cu2Er2O5(s) (2) and 2Cu2O(s) + 2Yb2O3(s) + O2(g) → 2Cu2Yb2O5(s) (3) δΜo2 = −219,741.3 + 145.671 T (±100) Jmol−1 (4) δΜo2 = −222,959.8 + 147.98 T(±100) Jmol−1 (5) and δΜo2 = −231,225.2 + 151.847 T(±100) Jmol−1 (6) respectively. Combining the chemical potential of oxygen for the coexistence of Cu2O + R2O3 + Cu2R2O5(R Ho,Er,Yb) obtained in this study with the oxygen potential for Cu2O + CuO equilibrium gives for the reactions, 2 CuO(s) + Ho2O3(s) → Cu2Ho2O5(s) (7) 2 CuO(s) + Er2O3(s) → Cu2Er2O5(s) (8) and 2 CuO(s) + Yb2O3(s) → Cu2Yb2O5(s) (9) δG‡ < 22,870.3 − 23.160 T (±100) Jmol−1 (10) δG‡ < 21,261.1 − 22.002 T (±100) Jmol−1 (11) and δG‡ < 17,128.4 - 20.072 T (±100) Jmol-1 (12) It can be clearly seen that the formation of Cu2R2O5R < Ho,Er,Yb) from the component oxides is endothermic. Further, Cu2R2O5(R < Ho,Er,Yb) are an entropy stabilized phases. Based on the results obtained in this study, the oxygen potential diagram for Cu-R-O(R < Ho,Er,Yb) ternary system at 1273K has been composed.  相似文献   

11.
Site-selective photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies carried out at 6K on the ∼1540 nm 4I13/24I15/2 emissions of Er3+ in Er-implanted GaN have revealed the existence of four different Er3+ sites and associated PL spectra in this semiconductor. Three of these four sites are excited by below-gap, impurity- or defect-related absorption bands, with subsequent nonradiative energy transfer to the Er3+ 4f electrons; a fourth site is excited by direct Er3+ 4f shell absorption. PLE spectra obtained by selectively detecting Er3+ PL from each of the three sites pumped by broad below-gap absorption bands are compared with the PLE spectra of broad PL bands attributed to implantation damage-induced defects in the Er-implanted GaN. This comparison enables us to distinguish broad-band, below-gap optical excitation processes for Er3+ emission that are attributable to (1) absorption due to implantation damage-induced defects; (2) absorption due to defects or impurities characteristic of the as-grown GaN film; and (3) an Er-specific absorption band just below the band gap which may involve the formation of an Er-related isoelectronic trap. The two sites excited by impurity-or defect-related absorption bands are also strongly pumped by above-gap excitation, while the sites pumped by the Er-related trap and direct 4f shell absorption are not. This observation indicates that excitation of Er3+ luminescence in crystalline semiconductor hosts by either optical or electrical injection of electron-hole pairs is dominated by trap-mediated carrier capture and energy transfer processes. These trap-mediated processes may also control the thermal quenching of Er3+ emission in semiconductors.  相似文献   

12.
The discovery of highly efficient broadband near infrared (NIR) emission material is urgent and crucial for constructing NIR lighting sources and emerging applications. Herein, a series of NIR emission hexafluorides A2BMF6:Cr3+ (A = Na, K, Rb, Cs; B = Li, Na, K, Cs; M = Al, Ga, Sc, In) peaking at ≈733–801 nm with a full width at half maximum (FWHM) of ≈98–115 nm are synthesized by a general ammonium salt assisted synthesis strategy. Benefiting from the pre-ammoniation of the trivalent metal sources, the Cr3+ can be more efficiently doped into the A2BMF6 and simultaneously prevent the generation of the competitive phase. Particularly, Na3ScF6:Cr3+em = 774 nm, FWHM ≈ 108 nm) with optimal Cr3+-doping concentration of 35.96% shows a high internal quantum efficiency of 91.5% and an external quantum efficiency of ≈40.82%. A lighting emitting diode (LED) device with a NIR output power of ≈291.05 mW at 100 mA driven current and high photoelectric conversion efficiency of 20.94% is fabricated. The general synthesis strategy opens up new avenues for the exploration of Cr3+-doped high efficiency phosphors, and the as-obtained record NIR output power demonstrates for NIR LED lighting sources applications.  相似文献   

13.
Electrospun nanobelts were prepared from lanthanum oxybromide doped with trivalent erbium ions (La2O3:Er3+), then up-conversion nanobelts were successfully synthesized from these by bromination with ammonium bromide (NH4Br) powder as bromine source and use of a double-crucible method. The products were characterized in detail by x-ray diffractometry, scanning electron microscopy, energy dispersion spectroscopy, and fluorescence spectroscopy. The results indicated the LaOBr:Er3+ nanobelts were tetragonal in structure with the space group P4/nmm. The width and the thickness of LaOBr:Er3+ nanobelts were 3.06 ± 0.42 μm and 290 nm, respectively. On excitation with a 980-nm diode laser, LaOBr:Er3+ the nanobelts emitted strong green and red up-conversion emission centered at 522 nm, 541 nm, and 667 nm. The green and red emission was assigned to the energy level transitions 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I l5/2 of the erbium ions (Er3+). A mechanism of formation LaOBr:Er3+ up-conversion luminescence nanobelts is proposed. This bromination technique not only results in preservation of the morphology of precursor rare earth oxides, it can also be used to fabricate other pure-phase rare earth oxybromide luminescence nanomaterials at relatively low calcination temperatures.  相似文献   

14.
Spectroscopic and thermal analysis indicates that tellurite glasses doped with B2O3 and GeO2 are promising candidate host materials for wide‐band erbium doped fiber amplifier (EDFA) with a high 980 nm pump efficiency. In this study, we measured the thermal stabilities and the emission cross‐sections for Er3+: 4I 13/24I 15/2 transition in this tellurite glass system. We also determined the Judd‐Ofelt parameters and calculated the radiative transition rates and the multiphonon relaxation rates in this glass system. The 15 mol% substitution of B2O3 for TeO2 in the Er3+‐doped 75TeO2‐20ZnO‐5K2O glass raised the multiphonon relaxation rate for 4I11/24I13/2 transition from 4960 s?1 to 24700 s?1, but shortened the lifetime of the 4I13/2 level by 14 % and reduced the emission cross‐section for the 4I13/24I15/2 transition by 11%. The 15 mol% GeO2 substitution in the same glass system also reduced the emission cross‐section but increased the lifetime by 7%. However, the multiphonon relaxation rate for 4I11/24I13/2 transition was raised merely by 1000 s?1. Therefore, a mixed substitution of B2O3 and GeO2 for TeO2 was concluded to be suitable for the 980 nm pump efficiency and the fluorescence efficiency of 4I13/24I15/2 transition in Er3+‐doped tellurite glasses.  相似文献   

15.
Mechanoluminescence (ML) materials with long-wavelength emission bands are essential for future in vivo bioimaging, non-destructive testing of solids, etc. The lack of a defined mechanism, however, prevents the application of near infrared ML materials above 650 nm in several new fields. Here, the addition of Ga3+ ions to Y3Al5O12: Cr3+ manipulates matrix microstructure evolution, boosting near-infrared (NIR) zero-phonon line (ZPL) stress optical output of the Cr3+ ion at 688 nm. The key factor changing the crystal field intensity Dq/B due to the addition of Ga3+ ions is what causes the luminescence amplification of ZPL. The ML fabricated by composite polydimethylsiloxane and Y3Al4GaO12: Cr3+ (YAGG: Cr3+) may penetrate chicken feet epidermal tissue and 4 mm pork tissue thanks to the strong NIR ZPL emission of YAGG: Cr3+ phosphor. This discovery of enhancing near-infrared ZPL intensity by solid solution provides us with a new technique for optimizing NIR ML materials, as well as a new prospect for NIR ML materials in biological applications.  相似文献   

16.
The hasty progress in smart, portable, flexible, and transparent integrated electronics and optoelectronics is currently one of the driving forces in nanoscience and nanotechnology. A promising approach is the combination of transparent conducting electrode materials (e.g., silver nanowires, AgNWs) and upconverting nanoparticles (UCNPs). Here, electrochromic devices based on transparent nanocomposite films of poly(methyl methacrylate) and AgNWs covered by UCNPs of different sizes and compositions are developed. By combining the electrical control of the heat dissipation in AgNW networks with size‐dependent thermal properties of UCNPs, tunable electrochromic transparent devices covering a broad range of the chromatic diagrams are fabricated. As illustrative examples, devices mixing large‐sized (>70 nm) β‐NaYF4:Yb,Ln and small‐sized (<15 nm) NaGdF4:Yb,Ln@NaYF4 core@shell UCNPs (Ln = Tm, Er, Ce/Ho) are presented, permitting to monitor the temperature‐dependent emission of the particles by the intensity ratio of the Er3+ 2H11/2 and 4S3/24I15/2 emission lines, while externally controlling the current flow in the AgNW network. Moreover, by defining a new thermometric parameter involving the intensity ratio of transitions of large‐ and small‐sized UCNPs, a relative thermal sensitivity of 5.88% K?1 (at 339 K) is obtained, a sixfold improvement over the values reported so far.  相似文献   

17.
Up‐conversion (UC) luminescent porous silica fibers decorated with NaYF4:Yb3+, Er3+ nanocrystals (NCs) (denoted as NaYF4:Yb3+, Er3+@silica fiber) are prepared by the electrospinning process using cationic surfactant P123 as a template. Monodisperse and hydrophobic oleic acid capped β‐NaYF4: Yb3+, Er3+ NCs are prepared by thermal decomposition methodology. Then, these NCs are transferred into aqueous solution by employing cetyltrimethylammonium bromide (CTAB) as secondary surfactant. The water‐dispersible β‐NaYF4:Yb3+, Er3+ NCs are dispersed into precursor electrospinning solution containing P123 and tetraethyl orthosilicate (TEOS), followed by preparation of precursor fibers via electrospinning. Finally, porous α‐NaYF4:Yb3+, Er3+@silica fiber nanocomposites are obtained after annealing the precursor fibers containing β‐NaYF4:Yb3+, Er3+ at 550 °C. The as‐prepared α‐NaYF4:Yb3+, Er3+@silica fiber possesses porous structure and UC luminescence properties simultaneously. Furthermore, the obtained nanocomposites can be used as a drug delivery host carrier and drug storage/release properties are investigated, using ibuprofen (IBU) as a model drug. The results indicate that the IBU–loaded α‐NaYF4:Yb3+, Er3+@silica fiber nanocomposites show UC emission of Er3+ under 980 nm NIR laser excitation and a controlled release property for IBU. Meanwhile, the UC emission intensity of IBU–α‐NaYF4:Yb3+, Er3+@silica fiber system varies with the released amount of IBU.  相似文献   

18.
Erbium-doped tellurite-based glasses(Er3+:TeO2-ZnO-La2O3) are prepared by the conventional melt-quenching technique,and concentration-dependent luminescence properties of Er3+ are investigated.A significant spectral broadening of the 1.53 μm fluorescence corresponding to 4I13/2 →4I15/2 transition is observed,and the fluorescence decaying becomes a nearly exponential way with the increasing Er3+concentration.Radiation trapping is evoked to explain the broadening of 4I13/2 → 4I15/2 emission line of Er3+ ions.The optimum doping content of Er2O3 for 1.53 μm fluorescence emission is about 1.5 mol%.  相似文献   

19.
Er~(3 )-activated silicate glasses are recognized of tech-nological interest in several areas and,in particular ,it iswell known for their successful application in opticalamplification at the C band (1530 -1565 nm) of tele-communications[1].Inside this l…  相似文献   

20.
We have investigated the optical activity of Er3+ ions in AlN via depth-resolved, (5 nm to 250 nm), low energy electron-excited nanoscale (LEEN) luminescence spectroscopy and compared it with the luminescence of an Er-free AlN film. For the Er-free film, there was no emission in the IR from the AlN at any depth, and at higher energies we measured only a broad, weak feature between 1.7–3.25 eV along with an O defect related feature at 3.8 eV, which is significantly enhanced toward the surface. We found strong emission in the AlN:Er films from the first excited → ground state transition of Er3+ at 0.80 eV along with many other excited state transitions, although the features are broad compared to those of GaN:Er. The AlN:Er luminescence saturates near a concentration of 1021 cm−3, at which point we also observe enhanced O defect related luminescence uniformly distributed throughout the film. This finding suggests a role for O in activating the Er at low Er concentrations, while inhibiting the Er activity at high O concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号