首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对SBS加氢反应器开发与设计,以SEBS-1650己烷溶液为液相,采用差压法和床层塌落法研究了气液鼓泡塔中高黏度溶液的流体力学行为,考察了黏度对低表面张力溶液的气含率、大小气泡气含率、大小气泡上升速度和比表面积等因素的影响。结果表明,随黏度增加,大气泡增多,气含率明显降低,塔内流型处于湍流区;由床层塌落曲线确定鼓泡塔内存在三种类型的气泡:大气泡、小气泡及细小气泡,随黏度增加,小气泡与细小气泡逐渐减少;黏度对大小气泡的上升速度略有影响,比表面积随黏度增加而明显降低。根据实验结果给出了大小气泡气含率与平均气含率的计算公式。  相似文献   

2.
在内径0.3 m,高6.6 m的加压气液鼓泡塔反应器中,采用电阻层析成像技术(ERT)研究了空气-水体系中气泡群平均上升速度、局部气含率及其径向分布。在表观气速0.119~0.312 m s 1,压力0.5~2.0 MPa,考察了表观气速、压力对气泡群上升速度、局部气含率及其径向分布的影响。实验结果表明,鼓泡塔中局部气含率随着表观气速与压力的增大而增大,其径向分布呈现出中心高边壁低的分布特征,但整个截面的分布并非严格对称,在r/R=0~0.3,气含率变化较小,且极大值出现在该范围内;气泡群的局部上升速度随着表观气速的增大而增大,但是随着压力的增大而减小。  相似文献   

3.
采用改进的Pavlov管测定鼓泡塔中的液相局部流速,采用电导探针方法测定气含率分布,测定了3种塔径(D200mm,D500mm,D800mm)、不同空塔气速下的流速三维分布和气含率分布。  相似文献   

4.
加压大型鼓泡床反应器内大小气泡气含率研究   总被引:6,自引:0,他引:6  
在内径0.3m、高6.6m的加压鼓泡床反应器内采用床层塌落技术测量床层内的大小气泡气含率实验。由于大小气泡上升速度不同,床层塌落曲线存在一水平段,在此基础上,详细考察了表面张力、粘度、系统压力、表观气速对大小气泡气含率的影响,得出大气泡气含率随粘度和表面张力升高而升高,随压力升高而降低;小气泡气含率随粘度和表面张力升高而降低,随压力升高而升高;并根据质量守恒定理,进行了解释。  相似文献   

5.
鼓泡塔反应器气液两相流CFD数值模拟   总被引:7,自引:3,他引:4       下载免费PDF全文
李光  杨晓钢  戴干策 《化工学报》2008,59(8):1958-1965
对圆柱形鼓泡塔反应器内的气液两相流动进行了三维瞬态数值模拟,模拟的表观气速范围为0.02~0.30 m•s-1; 模拟采用了双流体模型,并耦合了气泡界面密度单方程模型预测气泡尺寸,该模型考虑了气泡聚并与破碎对气泡尺寸的影响。液相湍流采用考虑气相影响的修正k-ε模型,两相间的动量传输仅考虑曳力作用。模拟获得了轴向气/液相速度分布、气含率分布、湍流动能分布以及气泡表面面积密度等,对部分模拟结果与实验值进行了定量比较,结果表明模拟结果与实验结果吻合较好。  相似文献   

6.
7.
鼓泡塔中非牛顿流体体系气含率的研究   总被引:4,自引:0,他引:4  
本文是在直径为0.1m、高为1m的鼓泡塔中,选用水、Na_2SO_3/CMC溶液,CMC溶液作为介质,采用单孔喷嘴布气,孔径为0.01m,测定了鼓泡塔的气含率,对实验数据进行了关联,提出了气含率的关联式,并与文献中有关结果进行了比较。  相似文献   

8.
采用电导探针测定了冷态鼓泡塔中不同气速下的气泡直径及气含率的轴向分布,考察了分布板对鼓泡塔操作性能的影响.结果表明:随着开孔率的减小,从均匀鼓泡区到过渡区的转变提前;在均匀鼓泡区,开孔率对气泡直径影响较小;在过渡区,开孔率大的分布器形成的稳定气泡直径较小、气含率较大;分布板开孔直径越大,形成的初始气泡直径越大,但对轴向气泡直径分布的影响仅限于分布器区.包含分布器影响的气泡直径经验关联式为d/D=140.2Bo-0.5Ga-0.12Fr0.099(h/D)-0.15T-0.34(0.5 cm/s<ug<7 cm/s).  相似文献   

9.
以超大规模细胞培养为目的,构建了与细胞培养体系十分接近的冷模实验体系,系统地研究了微载体(Cytodex I)、细胞保护剂(Pluronic F68)和消泡剂(Antifoam C)对鼓泡塔反应器中气、固、液三相流流体力学和氧传质特性的影响。在0.04~0.17cm/s 表观气速范围内采用 50 μm 孔径的烧结金属滤芯曝气时,在含有 0.5 和 1.0 g/L 的 Pluronic F68 的磷酸盐缓冲溶液冷模体系中,气含率与表观气速成线性增加关系,而气泡直径受表观气速影响较小;相同气速下的冷模体系与空气-水体系相比,气含率显著提高,气泡直径明显减小。在所研究的表观气速范围内微载体均可全悬浮,对气含率有一定增强,但微载体浓度为14%~20% 时对气泡大小几乎无影响。消泡剂用量在 1.60×10-4时,可以有效抑制泡沫的形成。添加剂对液膜传质系数 kL有较大负面作用,抵消了小气泡带来的传质面积增加,总的体积传质系数kLa 变化不大。Euler-Euler 多相流计算流体力学模型与拟稳态实验数据吻合较好,可用于指导反应器放...  相似文献   

10.
浆液循环锥形鼓泡塔反应器的相含率研究   总被引:1,自引:0,他引:1  
在浆液循环条件下,考察了以空气、水和石英砂为三相体系的锥形鼓泡塔反应器(Φ顶200mm,Φ底100m,高3000mm)中的相含率及固体颗粒浓度轴向分布。使用压降法和颗粒同步取样方法测量了不同表现气速(0 ̄0.125m/s),表现浆液循环速(0 ̄0.157m/s)以及固体颗粒浓度0 ̄100kg/m^3下相含率分布,并用园柱床的一维沉降-扩散模型近似地描述了固体颗粒辆向浓度分布的规律。在此基础上,本文  相似文献   

11.
Mixing behavior of the two phase air-water turbulent flow in a jet bubble column is examined. The time evolution of the mixing behavior of a liquid tracer in a turbulent air-water flow within a jet bubble column is predicted using a model based on the fundamental governing equations of fluid motion. The predictions of the model are compared with experimental measurements. Measured residence time distributions (RTD) of the liquid tracer within the cone agree well with the predicted values given by the model. For the range of parameters considered in the study, lack of radial mixing and large axial mixing are evident within the cone of the jet bubble column. Use of fundamental mathematical models for the study of hydrodynamics in a two-phase conventional bubble column has been reported earlier (Torvik, 1990; Jakobsen et al., 1993). The present paper extends the use of such models to predict the mixing characteristics in a jet bubble column.  相似文献   

12.
On the second-order moment turbulence model for simulating a bubble column   总被引:1,自引:0,他引:1  
Two versions of the second-order moment two-phase turbulence model are proposed in this study for simulating bubble-liquid two-phase turbulent velocity fluctuations and their interactions in bubble-liquid flows under the dispersed bubble regime. One of them is a full transport equation model; the other is an algebraic stresses model. The proposed model is used to simulate liquid and gas mean velocities, gas volume fraction, liquid and gas Reynolds stresses and turbulent kinetic energy in a 2-D bubble column. Furthermore, the bubble and liquid velocities, Reynolds stresses and gas volume fraction are measured using the PIV. The simulation results are in good agreement with the PIV results and experimental data in the literature. The studies reveal the liquid recirculation and bubble up-rising flow patterns, and anisotropic liquid and bubble normal Reynolds stresses. Bubble fluctuation is observed to be stronger than liquid fluctuation. Moreover, both the liquid velocity gradient and bubble-liquid interaction are important for the generation of liquid turbulence.  相似文献   

13.
A heterogeneous fluid dynamic model has been developed to describe the complex flow structure of two-phase in bubble columns. The equation of continuity and momentum balances form the basis of the model. Coupling of the two phases occurs via an interaction force, deduced by a force balance around a single rising bubble. Multiphase flow mixing processes are taken into consideration by introducing turbulent viscosities of the two phases involved. The Simulation program was extended to reactive system, taking into account the mass balances of a second order gas-liquid chemical reaction as well as the different absorption/reaction regimes. The gas phase concentration profiles show pronounced axial and radial dependences, while the liquid phase can be regarded as a CSTR with respect to the liquid component. With reference to the gaseous component, which is being absorbed in the liquid phase, the degree of back mixing does not show CSTR behaviour as the influence of different absorption conditions in different axial and radial reactor positions is superposed on that of turbulent motion of the liquid carrier of the dissolved gaseous component.  相似文献   

14.
15.
The effective thermal conductivity ke was measured for a continuous bubble column operating within the bubbly flow regime. ke was found to be independent of liquid flow rate but strongly dependent on gas flow rate and physical properties of the liquid phase over the ranges 0.1>uG>4 cm/s, 0>uL>3.4 cm/s, 0.00096> μ >0.0028 kg/m μ s and 0.047 >σ>0.072 N/m.  相似文献   

16.
《Chemical engineering science》1985,40(11):2013-2017
The mass transfer of oxygen between air and water in a recirculating bubble column has been studied, at gas and water superficial velocities of up to 0.23 m s-1 and 0.68 m s-1 respectively. Experiments show that the assumption of plug flow for the gas phase is reasonable, eliminating a possible source of error identified by other workers in calculating the mass transfer rates. The results obtained are consistent with other published work. It is also shown that for the air-water system breaking up the gas bubbles to increase the mass transfer does not have a large effect, due to rapid recoalescence of the bubbles.  相似文献   

17.
This paper presents the results of an experimental study on the gas holdup and the liquid phase axial dispersion coefficient in a narrow packed and unpacked rectangular bubble column. In both cases the gas and liquid flow rates were varied and the data were obtained by employing standard tracer technique. The gas holdup and the axial dispersion coefficient for both the packed and unpacked columns were found to be dependent on the gas and liquid flow rates. For given gas and liquid velocities and a given packing size in the case of the packed column, the rectangular column gave significantly higher dispersion coefficients than a cylindrical column of the equivalent cross sectional area. This result agrees very well with the one predicted by the velocity distribution model. The correlations for the Peclet number, the axial dispersion coefficient, and the fluid holdup for both the unpacked and packed bubble columns are presented.  相似文献   

18.
The dynamic environment within the bioreactor and in the purification equipment is known to affect the activity and yield of enzyme production. In the present work, the effect of hydrodynamic flow parameters and τN,max) and interfacial flow parameters ( and ) on the activity of lipase has been comprehensively investigated in bubble column reactors. Lipase solution was subjected to hydrodynamic flow parameters in 0.15 and 0.385 m i.d. bubble column reactors over a wide range of superficial gas velocity (0.01<VG<0.4-). The flow parameters were estimated using an in-house CFD simulation code based on k-ε approach. The extent of lipase deactivation in both the columns was found to increase with an increase in hydrodynamic and interfacial flow parameters. However, at equal value of any of these parameters, the extent of deactivation was different in the two columns. The rate of deactivation was found to follow first order kinetics. An attempt has been made to develop rational correlations for the extent of deactivation as well as for the deactivation constant. The rate of deactivation was found to be depending on the average turbulent normal stress and interfacial flow parameters such as bubble diameter and bubble rise velocity.  相似文献   

19.
The absorption of oxygen from air into tap water in a pulsed bubble column has been investigated. The column consisted of two 3 in. dia. vertical tubes 9 ft. 10 in. high connected at the base and pulsed by compressed air at frequencies of 1·09–1·35 Hz and amplitudes up to 3·7 in. The mass transfer product kLa was measured by the unsteady state method using a polarographic probe.  相似文献   

20.
The goal of this contribution is to formulate the simplest possible model for the bubble column hydrodynamics and analyse it for steady states, stability, and unsteady behaviour. The governing equations are based on the mass balance of the gas phase. Two closures for the gas velocity are used and reflect two typical operational regimes, homogeneous (HoR) and heterogeneous (HeR). The model has five parameters: column height H, terminal bubble speed u0, hindrance exponent n, enhance exponent m, gas flow rate q. Three branches of steady solutions were found for HoR, one stable, one unstable, one neutrally stable. The first two are physically relevant, are of the node-type, and merge in the turning point bifurcation at large enough gas input. Two branches of steady solutions were found for HeR, one stable and one neutrally stable. The first one is physically relevant, is of the node-type, and persists for all plausible parameter values. In both regimes, the neutrally stable solution was classified as unphysical. The transition regime (TrR) was obtained by matching the stable solutions of HoR and HeR, with help of a sigmoidal bridging function. The system stability was related to the model topology. The linear approximation of the bubble column dynamics was studied and the relaxation time estimated. The full nonlinear dynamics was demonstrated too. Both the steady and unsteady behaviour of the bubble column was compared with available experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号