首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang J  Shan Y  Zhao WW  Xu JJ  Chen HY 《Analytical chemistry》2011,83(11):4004-4011
Interactions between surface plasmons (SP) of metallic surfaces and photoluminescence (PL) of semiconductor nanocrystal (S-NC) surfaces have been extensively investigated, and SP-induced PL enhancement has been used as a sensitive analytical technique. However, this SP induced electrochemiluminescence (ECL) enhancement is rarely studied. In this work, we report greatly enhanced ECL of CdS thin films by gold nanoparticles (Au NPs) for ultrasensitive detection of thrombin. The system was composed of a CdS NC film on glassy carbon electrode (GCE) as ECL emitter attached an aptamer of thrombin. Then, ssDNA-AuNP conjugates hybridized with the aptamer to form a separation length of ca. 12 nm between CdS NCs and Au NPs. The system showed 5-fold enhancement of ECL intensity as compared to that without Au NPs, which might be attributed to the long-distance interaction between the S-NCs and SPR field of noble metal nanoparticles (MNPs).We also found that the enhanced ECL could be influenced by the involving factors such as the separation distance, spectral overlap, and magnetic field. Such enhancement in combination with smart recognition of aptamer and target protein allowed us to construct an ultrasensitive aptasensor for attomolar detection of thrombin. The presence of target protein was reflected by the ECL signal decrease caused by the target-induced removal of ssDNA-AuNP conjugates. The decrease of ECL signal was logarithmically linear with the concentration of thrombin in a wide range from 100 aM to 100 fM. The principle described in this work could be also applied to many other bioassays.  相似文献   

2.
Electrochemiluminescence immunosensor based on CdSe nanocomposites   总被引:1,自引:0,他引:1  
Jie G  Zhang J  Wang D  Cheng C  Chen HY  Zhu JJ 《Analytical chemistry》2008,80(11):4033-4039
A novel strategy for the enhancement of electrochemiluminescence (ECL) was developed by combining CdSe nanocrystals (NCs), carbon nanotube-chitosan (CNT-CHIT), and 3-aminopropyl-triethoxysilane (APS). A label-free ECL immunosensor for the sensitive detection of human IgG (HIgG) was fabricated. The colloidal solution containing CdSe NCs/CNT-CHIT composite was first covered on the Au electrode surface to form a robust film, which showed high ECL intensity and good biocompatibility. After APS as a cross-linker was covalently conjugated to the CdSe NCs/CNT-CHIT film, the ECL intensity was greatly enhanced. And, an intensity about 20-fold higher than that of the CdSe NCs/CNT-CHIT film was observed. After antibody was bound to the functionalized film via glutaric dialdehyde (GLD), the modified electrode could be used as an ECL immunosensor for the detection of HIgG. The specific immunoreaction between HIgG and antibody resulted in the decrease in ECL intensity. The ECL intensity decreased linearly with HIgG concentration in the range of 0.02-200 ng mL(-1), and the detection limit was 0.001 ng mL(-1). The immunosensor has the advantages of high sensitivity, speed, specificity, and stability and could become a promising technique for protein detection.  相似文献   

3.
Jie G  Wang L  Yuan J  Zhang S 《Analytical chemistry》2011,83(10):3873-3880
In this work, a novel dendrimer/CdSe-ZnS-quantum dot nanocluster (NC) was fabricated and used as an electrochemiluminescence (ECL) probe for versatile assays of cancer cells for the first time. A large number of CdSe-ZnS-quantum dots (QDs) were labeled on the NCs due to the many functional amine groups within the NCs, which could significantly amplify the QD's ECL signal. Capture DNA was specially designed as a high-affinity aptamer to the target cell; a novel ECL biosensor for cancer cells was directly accomplished by using the biobarcode technique to avoid cross-reaction. Moreover, magnetic beads (MBs) for aptamers immobilization were combined with the dendrimer/QD NCs probe for signal-on ECL assay of cancer cells, which greatly simplified the separation procedures and favored for the sensitivity improvement. In particular, a novel cycle-amplifying technique using a DNA device on MBs was further employed in the ECL assay of cancer cells, which greatly improved the sensitivity. To the best of our knowledge, this is the first study that the novel dendrimer/QD NCs probe combined with a DNA device cycle-amplifying technique was employed in the ECL assays of cells. Excellent discrimination against target and control cells is demonstrated, indicating that the ECL assays have great potential to provide a sensitive, selective, cost-effective, and convenient approach for early and accurate detection of cancer cells.  相似文献   

4.
Zhang S  Zhong H  Ding C 《Analytical chemistry》2008,80(19):7206-7212
A novel and sensitive flow injection chemiluminescence assay for sequence-specific DNA detection based on signal amplification with nanoparticles (NPs) is reported in the present work. The "sandwich-type" DNA biosensor was fabricated with the thiol-functionalized capture DNA first immobilized on an Au electrode and hybridized with one end of target DNA, the other end of which was recognized with a signal DNA probe labeled with CuS NPs and Au NPs on the 3'- and 5'-terminus, respectively. The hybridization events were monitored by the CL intensity of luminol-H2O2-Cu(2+) after the cupric ions were dissolved from the hybrids. We demonstrated that the incorporation of Au NPs in this sensor design significantly enhanced the sensitivity and the selectivity because a single Au NP can be loaded with hundreds of signal DNA probe strands, which were modified with CuS NPs. The ratios of Au NPs, signal DNA probes, and CuS NPs modified on the gold electrode were approximately 1/101/103. A preconcentration process of cupric ions performed by anodic stripping voltammetry technology further increased the sensor performance. As a result of these two combined effects, this DNA sensor could detect as low as femtomolar target DNA and exhibited excellent selectivity against two-base mismatched DNA. Under the optimum conditions, the CL intensity was increased with the increase of the concentration of target DNA in the range of 2.0 x 10(-14)-2.0 x 10(-12) M. A detection limit of 4.8 x 10(-15) M target DNA was achieved.  相似文献   

5.
Jie G  Liu B  Pan H  Zhu JJ  Chen HY 《Analytical chemistry》2007,79(15):5574-5581
Mercaptoacetic acid (RSH)-capped CdS nanocrystals (NCs) was demonstrated to be electrochemically reduced during potential scan and react with the coreactant S2O8(2-) to generate strong electrochemiluminescence (ECL) in aqueous solution. Based on the ECL of CdS NCs, a novel label-free ECL biosensor for the detection of low-density lipoprotein (LDL) has been developed by using self-assembly and gold nanoparticle amplification techniques. The biosensor was prepared as follows: The gold nanoparticles were first assembled onto a cysteamine monolayer on the gold electrode surface. This gold nanoparticle-covered electrode was next treated with cysteine and then reacted with CdS NCs to afford a CdS NC-electrode. Finally, apoB-100 (ligand of LDL receptor) was covalently conjugated to the CdS NC-electrode. The modification procedure was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy, respectively. The resulting modified electrode was tested as ECL biosensor for LDL detection. The LDL concentration was measured through the decrease in ECL intensity resulting from the specific binding of LDL to apoB-100. The ECL peak intensity of the biosensor decreased linearly with LDL concentration in the range of 0.025-16 ng mL-1 with a detection limit of 0.006 ng mL-1. The CdS NCs not only showed high ECL intensity and good biocompatibility but also could provide more binding sites for apoB-100 loading. In addition, the gold nanoparticle amplification for protein ECL analysis was applied to the improvement of the detection sensitivity. Thus, the biosensor exhibited high sensitivity, good reproducibility, rapid response, and long-term stability.  相似文献   

6.
The gold-doped cadmium telluride (Au:CdTe) nanocrystals were synthesized by aqueous solution route using L-glutathione and L-cysteine as stabilizers. As-prepared Au:CdTe nanocrystals have good monodispersity and a zinc-blende structure. Compared with undoped CdTe nanocrystals, the Au:CdTe nanocrystals exhibited improved photostability, higher cellular affinity, and lower cytotoxicity. The Au:CdTe nanocrystals were used as probes for long-term noninvasive fluorescence imaging in living cells (The human lung epithelial carcinoma A549 cells). They could be endocytic uptaken by A549 cells and stably labeled the cytoplasm for over a week. By transmission electron microscopy (TEM) analysis, the Au:CdTe NCs could be observed in vesicles after being uptaken by A549 cells. Doping semiconductor nanocrystals with gold has the potential to engineer the photostability and biocompatibility for extensive biomedical applications. This work developed a facile aqueous solution route to synthesize gold-doped semiconductor nanocrystals and may assist in the design of doped nanobiomaterials.  相似文献   

7.
Li L  Liu H  Shen Y  Zhang J  Zhu JJ 《Analytical chemistry》2011,83(3):661-665
Electrogenerated chemiluminescence (ECL) emission was observed from the water-soluble, bovine serum albumin (BSA)-stabilized Au nanoclusters for the first time. The possible ECL mechanism was discussed according to the presented results and ascribed to the effective electron transfer from the conduction-band of excited indium tin oxide (ITO) to Au nanoclusters (NCs). A simple label-free method for the detection of dopamine has been developed based on the Au NCs ECL in aqueous media. The Au NCs could be an effective candidate for new types of ECL biosensors in the future due to their fascinating features, such as good water solubility, low toxicity, ease of labeling, and excellent stability.  相似文献   

8.
Lin D  Wu J  Yan F  Deng S  Ju H 《Analytical chemistry》2011,83(13):5214-5221
A hemin bio-bar-coded nanoparticle probe labeled antibody was designed by the assembly of antibody and alkylthiol-capped bar-code G-quadruplex DNA on gold nanoparticles and the interaction of hemin with the DNA to form a G-quadruplex/hemin bio-bar-code. An ultrasensitive immunoassay method was developed by combining the labeled antibody with an electrochemiluminescent (ECL) immunosensor for protein. The ECL immunosensor was constructed by a layer-by-layer modification of carbon nanotubes, CdS quantum dots (QDs), and capture antibody on a glassy carbon electrode. In air-saturated pH 8.0 PBS the immunosensor showed a carbon-nanotube-enhanced cathodic ECL emission of QDs. Upon the formation of immunocomplex, the ECL intensity decreased owing to the consumption of ECL coreactant in bio-bar-code electrocatalyzed reduction of dissolved oxygen. Using α-fetoprotein as model analyte, the quenched ECL could be used for immunoassay with a linear range of 0.01 pg mL(-1) to 1 ng mL(-1) and a detection limit of 1.0 fg mL(-1). The wide detection range and high sensitivity resulted from the enhanced ECL emission and highly efficient catalysis of the bio-bar-code. The immunosensor exhibited good stability and acceptable fabrication reproducibility and accuracy, showing great promise for clinical application.  相似文献   

9.
Wang J  Han H  Jiang X  Huang L  Chen L  Li N 《Analytical chemistry》2012,84(11):4893-4899
Near-infrared electrochemiluminescence (NIR ECL) from quantum dots (QDs) has aroused particular attention. However, whether it is possible to achieve NIR ECL sensing has remained an open question. In this article, we reported a NIR ECL immunosensor with amplification techniques for ultrasensitive and selective determination of biomarker. In this sensing platform, NIR-emitting CdTe/CdS core(small)/shell(thick) QDs were first selected as NIR ECL emitters. The NIR ECL nanoprobe (SiO(2)-QD-Ab2) was designed by covalent assembly of goat antihuman IgG antibody (Ab2) on CdTe/CdS QDs tagged silica nanospheres. Gold nanoparticle-graphene nanosheet (Au-GN) hybrids were prepared by a sonication-induced self-assembly and served as an effective matrix for initial antibodies (Ab1) attachment. After a sandwich immunoreaction, the functionalized silica nanosphere labels were captured onto the glass carbon electrode surface. Integrating the dual amplification from the promoting electron transfer rate of Au-GN hybrids and the increasing QD loading of SiO(2)-QD-Ab2 labels, the NIR ECL response from CdTe/CdS QDs enhanced 16.8-fold compared to the unamplified protocol and successfully fulfilled the ultrasensitive detection of human IgG (HIgG) with a detection limit of 87 fg mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor HIgG level in human serum with satisfactory results obtained.  相似文献   

10.
《Advanced Powder Technology》2020,31(8):3158-3167
One-dimensional (1D) hierarchically structured CdS nanoparticles (NPs)/NiO nanofibers (NFs) heterostructures with remarkable removal efficiency for diazo dye Congo red (CR) were fabricated by a stepwise synthesis process, which was involved a chemical bathing deposition combined with calcination, and a microwave-assisted wet chemical reaction. The crystal phases, morphologies, optical absorption properties, and adsorption/photocatalytic activity of as-prepared products were investigated by XRD, FESEM, TEM, high-resolution TEM (HRTEM), N2 adsorption/desorption isotherms, UV–Vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectrum respectively. The experimental results indicated that binary satellite- core CdS NPs/NiO NFs heterojunctions are comprised of n-type CdS NPs with size of 10–30 nm decorated onto 1D p-type NiO NFs with diameter of 60–180 nm and length up to microns, which are self-assembled by nanoparticles with 30–100 nm in size. The possible formation mechanism for satellite-core structured CdS/NiO heterojunction is proposed. Interestingly, the decolorization efficiency over CdS/NiO heterostructures reached up to 91.2% in removal of aqueous CR at high concentration within 40 min under visible light irradiation, which was approximately 5.2 and 3.8 times as high as that of pure CdS nanocrystals (NCs) and the mixture of NiO NFs and CdS NCs. Furthermore, the possible photocatalytic mechanism was also investigated. The as-designed hybrid CdS NPs/NiO NFs heterostructures exhibited improved photocatalytic activity, which is attributed to the enhancement of the visible light adsorption, the efficient separation of photogenerated electrons and holes, and the high adsorption capacity towards CR molecules, thereby displaying superior visible- light-driven photodegradation of CR in high concentration. This work may provide a green engineering heterojunction technology to develop the advanced multifunctional nanocomposites for their applications in wastewater purification.  相似文献   

11.
Zhang J  Qi H  Li Y  Yang J  Gao Q  Zhang C 《Analytical chemistry》2008,80(8):2888-2894
A highly selective electrogenerated chemiluminescence (ECL) biosensor for the detection of target single-strand DNA (ss-DNA) was developed using hairpin DNA as the recognition element and ruthenium complex as the signal-producing compound. The ECL-based DNA biosensor was fabricated by self-assembling the ECL probe of thiolated hairpin DNA tagged with ruthenium complex on the surface of a gold electrode. In the absence of target ss-DNA, the ECL probe immobilized on the surface of the electrode was in the folded configuration in which its termini were held in close proximity to the electrode, and thus a strong ECL signal could be generated. In the presence of target ss-DNA, a stem-loop of the ECL probe on the electrode was converted into a linear double-helix configuration due to hybridization, resulting in the tag moving away from the electrode surface, which in turn decreased the ECL signal. The ECL intensity of the DNA biosensor generated a "switch off" mode, which decreased with an increase of the concentration of target DNA, and a detection limit of 9 x 10(-11) M complementary target ss-DNA was achieved. Single mismatched target ss-DNA was effectively discriminated from complementary target ss-DNA. The effect of different loop lengths of the hairpin DNA on the selectivity of the ECL DNA biosensor has been investigated. This work demonstrated that the sensitivity and specificity of an ECL DNA biosensor could be greatly improved using a hairpin DNA species which has an appropriate stem and loop length as the recognition element.  相似文献   

12.
A cathodic stripping of Te precursor in the presence of Cd2+ and biocompatible glutathione (GSH) was reported for facile synthesis of lowly cytotoxic and highly luminescent CdTe quantum dots (QDs) in aqueous solution. The photoluminescence, electrogenerated chemiluminescence (ECL), toxicity, and cyto-osmosis of the QDs were evaluated to reveal their potential bio-applications. The morphology and composition of as-prepared QDs were investigated by HRTEM and powder XRD spectroscopy, which indicated that the QDs consisted of a CdTe core coated with a CdS shell. The obtained CdTe/CdS core/shell QDs possessed good crystallinity, narrow monodispersity and long-term stability. These QDs showed high fluorescence quantum yields of 49% to 63% over a broad spectral range of 540-650 nm. Efficient and stable ECL of QDs was observed on the anodic potential region upon the electrode potential cycled between 1.5 and -2.0 V versus Ag/AgCl. Furthermore, human liver cancer HepG2 cells were chosen as model cells for toxicity assay of QDs. Effects of the concentration, size, and incubation time of CdTe QDs capped with GSH or mercaptoacetic acid (MAA) on the cell metabolic viability and cyto-osmosis were evaluated. GSH-capped CdTe QDs could infiltrate cytomembrane and karyothecas, and were less cytotoxic than MAA-capped ones under the same experimental conditions. The reported CdTe QDs could be good candidates of fluorescent and ECL probes for biosensing and cell imaging.  相似文献   

13.
In this work, chitosan (Ch)-capped gold nanoparticles (NPs) were prepared in aqueous solutions by electrochemical methods. First, Ch-capped Au cations were prepared by dissolving Au substrates via electrochemical treatments of oxidation-reduction cycles. Then the Ch-capped Au cations were reduced via sonoelectrochemical reductions to synthesize Ch/Au nanocomposites (NCs). The particle size of prepared Au NPs with predominant (1 1 1) face on Ch is ca. 15 nm. Ch on the prepared Ch/Au NCs can easily react with acetaldehydes in mainstream smokes to form Schiff bases. Then catalysts of Au NPs can instantaneously decompose capped acetaldehydes and oxidize CO into CO2 to protect people from poisoning in the mainstream smokes.  相似文献   

14.
本文设计了一种基于脱氧核酶(DNAzyme)检测Pb2+的电致化学发光(Electrocheluminescent,ECL)传感器。将对Pb2+特异性识别的DNAzyme通过金-巯键固定于金电极表面,并与标记有二氧化硅包埋的钌联吡啶(Ru-SNPs)的底物DNA链发生杂交,形成双链DNA(ds-DNA)传感器。Pb2+不存在时,由于Ru-SNPs靠近电极表面,产生强的ECL信号。当Pb2+存在时,DNAzyme催化底物链断裂,Ru-SNPs远离电极表面,导致ECL信号下降。实验结果表明ECL强度与Pb2+浓度在0.2-1.0 nmol/L范围内呈良好的线性关系,检测限可达0.04 nmol/L,其他二价金属离子对其基本无干扰。  相似文献   

15.
The continuous tuning of plasmonic nanoassembly's structure is the key to manipulate their optical and catalytic properties.Herein,we report a strategy of using macroscopic deformation to continuously tune the structure and optical activity of massive plasmonic nanoassemblies that are embedded in elastic polymer matrix.Plasmonic gold nanoparticles(Au NPs)are assembled to nanochains(Au NCs)with defined length and further embedded into polyvinylpyrrolidone(PVP)matrix.The nanostructure and plasmonic properties of massive Au NCs in this Au NCs-PVP film can be simultaneously and continuously tuned,simply by reversible mechanical deformation of this elastic film.In this way,the surface-enhanced Raman scattering(SERS)enhancement factor of this film as a SERS substrate can be mechanically modulated in the range of 100to 6.8×107.Meanwhile,the PVP matrix also serves as a selective diffusion barrier to eliminate the fluorescence interference of large biomolecules,which enables the Au NCs-PVP film as a convenient SER S substrate for quick and direct analysis of small molecule analytes in biological samples and food,avoiding the complicate and time-consuming sample pretreatment process.  相似文献   

16.
Plasmon‐mediated photocatalytic systems generally suffer from poor efficiency due to weak absorption overlap and thus limited energy transfer between the plasmonic metal and the semiconductor. Herein, a near‐ideal plasmon‐mediated photocatalyst system is developed. Au/CdSe nanocrystal clusters (NCs) are successfully fabricated through a facile emulsion‐based self‐assembly approach, containing Au nanoparticles (NPs) of size 2.8, 4.6, 7.2, or 9.0 nm and CdSe quantum dots (QDs) of size ≈3.3 nm. Under visible‐light irradiation, the Au/CdSe NCs with 7.2 nm Au NPs afford very stable operation and a remarkable H2‐evolution rate of (10× higher than bare CdSe NCs). Plasmon resonance energy transfer from the Au NPs to the CdSe QDs, which enhances charge‐carrier generation in the semiconductor and suppresses bulk recombination, is responsible for the outstanding photocatalytic performance. The approach used here to fabricate the Au/CdSe NCs is suitable for the construction of other plasmon‐mediated photocatalysts.  相似文献   

17.
Novel CdSe quantum dot (QD)-sensitized Au/TiO2 hybrid mesoporous films have been designed, fabricated, and evaluated for photoelectrochemical (PEC) applications. The Au/TiO2 hybrid structures were made by assembly of Au and TiO2 nanoparticles (NPs). A chemical bath deposition method was applied to deposit CdSe QDs on TiO2 NP films with and without Au NPs embedded. We observed significant enhancements in photocurrent for the film with Au NPs, in the entire spectral region we studied (350–600 nm). Incident-photon-to-current efficiency (IPCE) data revealed an average enhancement of 50%, and the enhancement was more significant at short wavelength. This substantially improved PEC performance is tentatively attributed to the increased light absorption of CdSe QDs due to light scattering by Au NPs. Interestingly, without QD sensitization, the Au NPs quenched the photocurrent of TiO2 films, due to the dominance of electron trapping over light scattering by Au NPs. The results suggest that metal NPs are potentially useful for improving the photoresponse in PEC cells and possibly in other devices such as solar cells based on QD-sensitized metal oxide nanostructured films. This work demonstrates that metal NPs can serve as light scattering centers, besides functioning as photo-sensitizers and electron traps. The function of metal NPs in a particular nanocomposite film is strongly dependent on their structure and morphology.   相似文献   

18.
Selenium (Se) nanorods (NRs) capped with BSA were used as precursor to synthesize Se-Au/Ag hybrid nanocrystals (NCs). Aqueous Au/Ag ions in the presence of fixed amount of purified dried Se NRs were reduced by ascorbic acid at 80 degrees C to generate respective nucleating centres which subsequently grew on the capped BSA hot spots. The hybrid NCs thus obtained were characterized by SEM, TEM, and EDS analysis while their synthesis was monitored simultaneously by UV-visible absorbance due to the surface plasmon resonance of Au and Ag nanoparticles (NPs). In both cases, a gradual decrease in the absorbance of Au/Ag NPs with respect to reaction time was observed which indicated a diminishing number density of such particles in colloidal aqueous phase. SEM and TEM analyses then explained the presence of Au NPs in self assembled ball shaped aggregates and their selective adsorption on Se NRs, whereas no self aggregated balls of Ag NPs were observed and they always grew on the Se NRs. The results were discussed on the basis of different routes followed by the Au and Ag nucleating centres to produced hybrid nanomaterials.  相似文献   

19.
Polycrystalline thin film II–VI compound semiconductors of cadmium sulfide (CdS) and cadmium telluride (CdTe) are the leading materials for the development of cost effective and reliable photovoltaic systems. The two important properties of these materials are its nearness to the ideal band gap for photovoltaic conversion efficiency and they have high optical absorption coefficients. Usually thin film solar cells are made by hetero-junction of p-type CdTe with n-type CdS partner window layer. In this article, we have deposited CdTe films on mica substrates using thermal evaporation technique and CdTe/CdS junction were developed by depositing a thin layer of CdS on to the CdTe substrate from chemical bath deposition method. The device was characterized by current voltage and photocurrent spectroscopy technique prior to the deposition of the transparent conducting layer. The devices were annealed in air at different temperatures and found that the device annealed at 673?K had better photovoltaic parameters. The efficiency of a typical device under 50?mW?cm?2 illumination was estimated as 4%.  相似文献   

20.
肖立  赵欢  范红松 《材料导报》2016,30(22):55-59, 76
采用水相法合成了Cu掺杂CdTe量子点,并用CdS壳层进行包覆,得到了Cu∶CdTe/CdS核壳结构量子点。采用荧光发射光谱(FL)、紫外可见吸收光谱(UV-Vis)、透射电镜(TEM)以及能谱仪(EDS)等手段对CdTe量子点和Cu∶CdTe/CdS核壳量子点进行了表征。研究了不同Cu掺杂浓度、CdS壳层生长时间以及Cd/硫脲物质的量比对Cu∶CdTe掺杂量子点光学性能的影响,并采用人成骨肉瘤细胞(MG-63细胞)对样品做了细胞毒性分析。研究结果表明:通过掺杂和包壳的步骤,合成的Cu∶CdTe/CdS核壳量子点在CdTe量子点的基础上实现了荧光发射红移,荧光强度提高,以及细胞毒性降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号