首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In-phase(IP) and out-of-phase(OP)thermal-mechanical fatigue(TMF) behavior of cast Ni-base superalloy K417 was studied.All experiments were carried out under total strain control with temperature cycling between 400-850℃.Both in-phase and out-of-phase TMF specimens exhibited cyclic hardening followed by cyclic softening at the minimum temperature.Besides,they cyclically hardened in the early stage of life followed by cyclic softening at the minimum temperature.Besides,they cyclically hardened in the early stage of life followed by cyclic softening at the maximum temperature.OP TMF life was longer than of IP TMF.Various damage mechanisms operating in different controlled strain ranges and phasing were discussed.A few life prediction methods for isothermal fatigue were used to handle TMF fatigue and their applicability to superalloy K417 was evaluated.The SEM analysis of the fracture surface showed that transgranular fracture was the principal cracking mode for both IP and OP TMF.Oxidation was the main damage mechanism in causing shorter fatigue life for IP TMF compared with OP TMF.  相似文献   

2.
In this paper fatigue crack closure under in-phase and out-of-phase thermomechanical fatigue (TMF) loading is studied using a temperature dependent strip yield model. It is shown that fatigue crack closure is strongly influenced by the phase relation between mechanical loading and temperature, if the temperature difference goes along with a temperature dependence of the yield stress. In order to demonstrate the effect of the temperature dependent yield stress, the influence of in-phase and out-of-phase TMF loading is studied for a polycrystalline nickel-base superalloy. By using a mechanism based lifetime model, implications for fatigue lives are demonstrated.  相似文献   

3.
本文在变温非线性运动强化规律所描述的高温合金材料热机械疲劳应力-应变循环特性的基础上,重点讨论了应变控制的时间相关热机械疲劳寿命预测技术。对于温度循环的影响,采用由应变能密度表示的损伤参数,并且引入了温度损伤系数。对于循环时间的影响,引入了蠕变─疲劳相互作用的损伤机制,采用韧性耗散损伤模型。在确定模型的一些参数时,采用等温力学试验和疲劳试验的数据,把等温疲劳研究成果推广到变温疲劳分析领域。  相似文献   

4.
In this study, thermomechanical fatigue (TMF) behaviours, failure mechanisms and the lifetime prediction method of a nickel-based single-crystal superalloy with [001] orientation were investigated based on the stress-controlled TMF experiments at different stress/temperature ranges, dwell times and phase angles. The fractographic observations revealed a creep-fatigue failure mechanism for in-phase thermomechanical fatigue (IP TMF) and an oxidation-fatigue failure mechanism for out-of-phase thermomechanical fatigue (OP TMF). According to the observed physical phenomenon of the slip along particular planes during the deformation process, selecting the steady-ratcheting shear-strain rate as the representative physical quantity, a new critical-plane-based lifetime prediction model which was suitable for a variety of experiment conditions was established. The predicted lifetimes for both standard specimens and turbine blades showed good agreements with the experimental data. The strong versatility and the concise mathematic form that made the model have some practical application value.  相似文献   

5.
The high-temperature deformation behaviour of a second generation γ-TiAl sheet material with near-γ microstructure was characterised under tensile, creep, isothermal and thermomechanical fatigue (TMF) loading conditions. Test temperature ranged from 500 to 750 °C in isothermal tests and these temperatures were also used as minimum and maximum temperature of in-phase (IP) and out-of-phase (OP) thermomechanical fatigue tests. Under tensile loading, a ductile-to-brittle transition temperature (DBTT) of about 650 °C was observed. At this temperature the material experiences a temperature dependent change in the fracture morphology. Creep tests carried out in the temperature range from 650 to 800 °C under true constant stress conditions revealed a temperature and stress dependence of the Norton stress exponent n and the apparent activation energy for creep Qapp. With increasing temperature, isothermal fatigue life at constant strain amplitude decreased in vacuum, but increased in air indicating an abnormal (inverse) environmental effect. Under IP loading, fatigue is characterised by cyclic softening due to dynamic recrystallisation. OP loading drastically reduces fatigue life and turned out to be an extremely critical loading situation for γ-TiAl alloys.  相似文献   

6.
The isothermal low cycle fatigue (LCF)and thermomechanical fatigue (TMF) behaviourof a Ni-base superalloy was investigated. Theresults show that temperature plays an importantrole in both LCF and TMF. The alloy shows thelowest LCF fatigue resistance in the intermediatetemperature range (~760℃). For strain-controlledTMF, in-phase (IP) cycling is more damagingthan out-phase (OP) cycling. The high tempera-ture exposure in the TMF cycling influencesthe deformation behaviour at the low temperature.LCF lives at different temperatures, and IPand OP TMF lives are successfully correlatedby using the hysteresis parameter Δσ·Δε_p.  相似文献   

7.
The cyclic deformation and lifetime behaviors of a single crystal nickel-based superalloy CMSX-4 have been investigated under out-of-phase thermomechanical fatigue (OP TMF) and isothermal low cycle fatigue (LCF) conditions. OP TMF life exhibited less than a half of LCF life although smaller inelastic strain range and lower mean stress level during OP TMF were observed compared to those during LCF. During OP TMF cycling, the maximum tensile strain at the minimum temperature was found to accelerate the surface crack initiation and propagation. Additionally, the multiple groups of parallel twin plates near crack provided a preferential path for crack propagation.  相似文献   

8.
An attempt has been made to understand the thermomechanical fatigue (TMF) behaviour of a nitrogen-alloyed type 316L austenitic stainless steel under different temperature domains. Smooth, hollow specimens were subjected to in-phase (IP) and out-of-phase (OP) thermal–mechanical cycling in air under a mechanical strain control mode, at a strain rate of 6.4 × 10?5 s?1 and a strain amplitude of ±0.4%. For the sake of comparison, total strain controlled low cycle fatigue (LCF) tests were also performed at the peak temperatures of TMF cycling on similar specimens employing the same strain rate and strain amplitude. Life was found to depend on the thermal/mechanical phasing and temperature. Creep was found to contribute to life reduction in IP tests when the peak temperature of cycling was above 600 °C. A few TMF tests were performed in vacuum in order to assess environmental influence on life. Thermomechanical fatigue cycling led to the development of significant amounts of mean stresses and the stress response was generally higher compared to that of LCF tests at the peak cyclic temperatures. Also, the isothermal tests at the peak temperature of TMF cycling resulted in lower lives compared to those obtained under TMF. An attempt was made to predict the TMF life using the isothermal database and satisfactory predictions were achieved using the Ostergren’s frequency modified damage function (FMDF) approach.  相似文献   

9.
In this paper, a crack opening stress equation for in-phase and out-of-phase thermomechanical fatigue (TMF) loading is proposed. The equation is derived from systematic calculations of the crack opening stress with a temperature dependent strip yield model for both plane stress and plane strain, different load ratios and different ratios of the temperature dependent yield stress in compression and tension. Using a load ratio scaled by the ratio of the yield stress in compression and tension, the equation accounts for the effect of the temperature dependent yield stress and the constraint on the crack opening stress. Based on the scaling relation established in this paper, Newman’s crack opening stress equation for isothermal loading is enabled to predict the crack opening stress under TMF loading.  相似文献   

10.
ABSTRACT High temperature isothermal fatigue (IF) and in-phase thermo-mechanical fatigue (TMF) tests in load control were carried out in cast hot work die steel. At the same load amplitude, the fatigue lives obtained in the in-phase TMF tests are lower than those obtained in the isothermal tests. Observations of fracture surface and the response of stress–strain reveal that cyclic creep in the tensile direction occurs and the intergranular cracks dominate in TMF tests, whereas cyclic creep in the compressive direction occurs and the path of the crack growth is mainly transgranular in IF tests. A model of life prediction, based on the Chaboche law, was discussed. Damage coefficients that are functions of the maximum temperature and the variation of temperature are introduced in the model so as to evaluate TMF lives in load control. With this method, the lifetime prediction gives results corresponding well to experimental data.  相似文献   

11.
An approach to fatigue life modeling in titanium-matrix composites   总被引:1,自引:0,他引:1  
A review of the procedures developed by the author and his colleagues over the last several years for predicting elevated-temperature fatigue life of metal-matrix composites is presented. Modeling approaches involve concepts of both linear and non-linear summation of damage from cycle-dependent as well as time-dependent mechanisms. The analyses, further, treat the micromechanical stresses in the constituents as parameters in the life prediction models. The material characterized is SCS-6/Timetal®21S, a metastable beta titanium alloy reinforced with continuous SiC fibers. Modeling is applied to isothermal fatigue at different frequencies and temperatures, and thermomechanical fatigue (TMF) under both in-phase and out-of-phase loading conditions at different temperature ranges and maximum temperatures. Experimental data are used as the basis for determining the parameters embedded in the models. The numerical results, in turn, provide insight into the dominant mechanisms controlling fatigue life under a given condition. The capability to correlate experimental data from a wide variety of test conditions for several versions of a damage summation model is demonstrated.  相似文献   

12.
In this paper, the cyclic plasticity and fatigue crack initiation behaviour of a tempered martensite ferritic steel under thermo-mechanical fatigue conditions is examined by means of micromechanical finite element modelling. The crystal plasticity-based model explicitly reflects the microstructure of the material, measured by electronic backscatter diffraction. The predicted cyclic thermo-mechanical response agrees well with experiments under both in-phase and out-of-phase conditions. A thermo-mechanical fatigue indicator parameter, with stress triaxiality and temperature taken into account, is developed to predict fatigue crack initiation. In the fatigue crack initiation simulation, the out-of-phase thermo-mechanical response is identified to be more dangerous than in-phase response, which is consistent with experimental failure data. It is shown that the behaviour of thermo-mechanical fatigue can be effectively predicted at the microstructural level and this can lead to a more accurate assessment procedure for power plant components.  相似文献   

13.
This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress–strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson–Cook law were applied to improve the estimation of the stress–strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.  相似文献   

14.
15.
Fatigue life modeling of titanium-based metal-matrix composites (MMCs) was accomplished by combining a unified viscoplastic theory, a non-linear micromechanics analysis and a damage accumulation model. The micromechanics analysis employed the Bodner-Partom unified viscoplastic theory with directional hardening. This analysis was then combined with a life-fraction fatigue model to account for the time-dependent component of fatigue damage. The life-fraction fatigue model involved the linear summation of damage from the fiber and matrix constituents of the composite. A single set of empirical constants for the life-fraction fatigue model were established for each of two titanium MMCs reinforced with silicon carbide fibers: SCS-6/Ti-15-3 and SCS-6/ TIMETAL®21s. The predicted fatigue lives were within one order of magnitude of the experimental data for different loading conditions: isothermal fatigue, and both in-phase and out-of-phase thermomechanical fatigue. MMCs modeled included cross-ply, quasi-isotropic and unidirectional SCS-6/TIMETAL®21s, and cross-ply and quasi-isotropic SCS-6/Ti-15-3 laminates.  相似文献   

16.
Abstract

In this article, out-of-phase thermo-mechanical fatigue (TMF) behaviours of light alloys were investigated in comparison to their high temperature low cycle fatigue (LCF) behaviours. For this objective, strain based fatigue tests were performed on the A356 aluminium alloy and on the AZ91 magnesium alloy. Besides, TMF tests were carried out, where both strain and temperature changed. The fatigue lifetime comparison demonstrated that the TMF lifetime was less than that one under LCF loadings at elevated temperatures for both light alloys. The reason was due to severe conditions in TMF tests in comparison to LCF tests. The temperature varied in TMF test but it was constant under LCF loadings. As the other reason, the tensile mean stress occurred under TMF loadings, in comparison to the compressive mean stress under LCF loadings. At high temperatures, the cyclic hardening behaviour occurred in the AZ91 alloy and the A356 alloy had the cyclic softening behaviour.  相似文献   

17.
Abstract

Due to high temperatures and mechanical loads, cracks are initiated in aero engine turbine blades which limit the cyclic life of these components. The materials used for components which underlie high thermal and mechanical load are single crystalline (SX) nickel based super alloys that in most cases contain a certain amount of rhenium. Dramatically increasing Re prices lead to the development of Re-free alloys.

In this work, low-cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) tests were carried out on the Re-free single crystal M-247LC SX. The test results are shown and a model based on crack propagation was used to predict LCF and TMF life. It was shown, that the modeling results fit properly for out-of-phase TMF and LCF life while for in-phase TMF differences between calculated life and experiments occur due to a different mechanism of fracture.  相似文献   

18.
Abstract

Isothermal and thermomechanical fatigue (TMF) behaviour (including cyclic stress response and number of cycles to failure) of a Ti – 5.6Al – 4.8Sn – 2.0Zr – 1.0Mo – 0.32Si – 0.8Nd (wt-%) hightemperature titanium alloy was examined. The purpose of the present investigation was to understand the effect of temperature fluctuation on the cyclic behaviour and fatigue life of this alloy and to test the suitability of lifetime prediction based on isothermal laboratory data. The results indicated that both the level of peak stress and fatigue life were decreasing with increasing test temperature from 400°C to 650°C in isothermal fatigue (IF) tests. In TMF tests run between 400°C and 600°C, the peak stresses corresponding to 600°C coincide well with that found in IF tests run at 600°C, while a slight increase in cyclic hardening was found for peak stress corresponding to 400°C compared to that found in a 400°C/IF test. This increase in cyclic hardening became more pronounced when the maximum temperature increased to 650°C. Fatigue life in 'out of phase' (OP) condition was found to be shorter than under an equivalent 'in phase' (IP) condition, and this gap increased with decreasing mechanical strain amplitude. The results indicate that lifetime prediction based on isothermal laboratory data may lead to non-conservative results if thermal fluctuations are present in components made of the present alloy.  相似文献   

19.
The framework for developing a mechanistic-based life prediction model for metal matrix composites is described. For a composite consisting of unidirectional silicon carbide fibers in a titanium aluminide matrix, SCS-6/Ti-24A1-1INb (at%) [0]8, three dominant damage mechanisms were identified: (1) matrix fatigue damage, (2) surface-initiated environmental damage, and (3) fiber-dominated damage. Damage expressions were developed for each mechanism along with a method for determining the constants. The damage is summed to obtain the total life. The model is capable of making predictions for a wide range of histories, including isothermal fatigue at different frequencies and stress-ratios, thermomechanical fatigue (TMF) under in-phase and out-of-phase cycling conditions, thermal cycling at constant stress, and stress holds at either maximum or minimum stress. Considering the wide range of cyclic conditions, the predictions compare favorably with experiments. In addition, the controlling damage mechanism for each history is predicted.  相似文献   

20.
Abstract

This paper deals with the identification of material constants to simulate the effect of cyclic mechanical loading and temperatures. A Chaboche viscoplasticity model was used in this study to model the thermal-mechanical behaviour of a P91 martensitic steel. A fully-reversed cyclic mechanical testing programme was conducted isothermally between 400 and 600°C with a strain amplitude of 0.5%, to identify the model constants using a thermo-mechanical fatigue (TMF) test machine. Thermo-mechanical tests of P91 steel were conducted for two temperature ranges of 400 – 500°C and 400 – 600°C. From the test results, it can be seen that the P91 steel exhibits cyclic softening throughout the life of the specimens, for both isothermal and thermal-mechanical loading and this effect can be modelled by the set of viscoplasticity constants obtained. Finite element simulations of the test specimens show good comparison to isothermal and TMF experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号