首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高温固相反应法制备了CaSi2O2N2:C e3+/Eu 2+荧光粉,研究了分别掺杂Ce3+、Eu2+及Ce3+/Eu2+共掺 杂时荧光粉 的发光特性。CaSi2O2N2:Ce3+在333 nm激发下得到宽波段的发射谱,发射峰 位于395nm,随着Ce3+浓度的增大,发 射波长出现明显的红移,猝灭浓度为1mol%。CaSi2O2N2:Eu2+在397nm激发下得到峰值位于540nm处的宽波段发射谱, 猝灭浓度为1mol%。对于Ca0.99-2xSi2O2N2:xCe 3+,xLi+,0.01Eu2+荧光粉,在333nm激发下,位于395nm处的发射峰十分微 弱,在540nm处有宽带发射,随着Ce3+浓度增大,位于540nm处的Eu2+的特征 发射显著增强。对于Ca0.98-ySi2O2N2: 0.01Ce3+,0.01Li+,yEu2+荧光粉,在激发光波长 为333nm,Eu2+浓度较低时,可以观察到两个发射带,峰值分 别位于395nm及540nm,随着Eu2+浓度增加,位于395nm的 发射强度一直减小,而540nm处的发射强度先增加后减小,猝灭浓 度为0.4mol%。证实了Ce3+,Eu2+之间发生了有效的能 量传递。计算出Ce 3+、Eu2+之间能量传递的效率ηT,在Eu2+浓 度为 1mol%时ηT趋于饱和,达到97.7%。通过计算,得到Ce3+ 与Eu2+之间的能量传递方式为电偶极-电偶极相互作用。  相似文献   

2.
采用高温固相法,制备了系列Eu3+激活的掺 杂Zn2+、Mg2+和Ba2+离子的钼酸盐 红色荧光粉,并通过测试荧光粉的发射光谱、激发光谱和X射线衍射(XRD)谱等,对荧光粉 的物相结构 、发光性能进行了分析。 实验结果表明:荧光粉可以被近紫外(395nm)和蓝光(465nm) 有效激发,发射峰值位于616nm(Eu3+5D07F2跃迁)波长的红光,395nm和465nm的激发 波长与 目前广泛使用的近紫外和蓝光LED芯片相匹配,适用于LED的制造;掺杂Zn2+、Mg 2+和Ba2+的 Ca0.88-xRxMoO4:0.08Eu 3+红色荧光粉的发光强度均得到提高,且最佳掺杂浓度分别为15%和5%。在最佳浓度下,3种荧光粉的 发光强度大小为Ca0.73Zn0.15Mo O4:0.08Eu3+ > Ca0.78Mg0.10MoO4:0.08Eu3+> Ca0.83Ba 0.05MoO4:0.08Eu3+。色坐标分析结果表明 :所制备的 荧光粉的色坐标达到了国家标准,比商用的Y2O3:Eu3+红色荧光材料更接近于标 准红色色坐标。  相似文献   

3.
采用高温固相法在还原气氛中合成K(Na)BaBP2O 8:Eu2+系列硼磷酸盐蓝色荧光粉,研究煅烧温度 以及用Na+掺杂替换K+对荧光粉晶体结构和发光性能的影响。利用热重-示差扫描量热 (TG-DSC)、X射 线衍射(XRD)、荧光(PL)光谱和色坐标(CIE)等手段确定了 荧光粉的合成温度,并对荧光粉的晶体 结构和发光性能进行表征。结果表明,800~875℃制备的KBaBP2O 8:0.03Eu2+荧光粉具有KBaBP2O8纯相 结构,属于四方晶系,空间群I42d,荧光粉的最佳合 成温度为875℃。K(Na)BaBP2O8:Eu2+系列荧光粉 可被波长为365nm的近紫外光有效激发,与InGaN芯片( 350~410nm)相匹配;其发射光谱为 400~650nm的不对称宽带,发射峰位于456nm 左右,对应Eu2+的4f65d1-4f7-5d0跃迁。利用van Uitert经 验公式计算了Eu2+取代KBaBP2O8中Ba2+和K+时所占的晶体学格位,得出 449.4nm、439.1nm两个发射属 于Eu2+占据8配位的Ba2+和K+的5d-4f跃迁发射 ,511.0、506.7nm两个发射属于Eu2+ 占据6配位的 Ba2+和K+的5d-4f跃迁发射。用适量Na+替换K+可 以明显提高荧光粉的发光强度,其最佳掺杂摩尔比例为 Na/K=0.35/0.65,此时荧光粉的主晶相没有改变,但XRD衍射峰向大角度方向偏移。K(Na)Ba BP2O8:Eu2+ 荧光粉的CIE点可落在从蓝光到蓝白光区域,在近紫外LED应 用中可以根据实际需要灵活选择。  相似文献   

4.
王飞  田一光  张乔 《光电子.激光》2015,26(8):1520-1525
采用高温固相法制备了Sr1-x Al2Si2O8:Eu3+ x,Li+0.03系列红色荧光粉,研究了试样的晶体 结构和发光性质。合成的试样均为纯相的SrAl2Si2O8晶体,单斜晶系,空间群为 C2/m(12); Eu3+和Li+进入基质晶体中,使得SrAl2Si2O8晶胞参数a、b和c 略微减小,只引起了晶体结构轻 微的畸变。试样的激发光谱由位于220~580nm波长的一个宽激发带 和一组锐线峰构成,其中 395nm波长处Eu3+7F05L6激发峰的强度最强。发射光谱位于550~750nm波长范围内呈现多 条锐 线发射,其中595nm和615nm波长处发射峰最 强,分别归属于Eu3+5D07F1磁偶极跃迁和5D 07F2电偶极跃迁。研究了Eu3+浓度对荧光粉发光性能的影响, 结果表明,随着Eu3+浓度的增 加,发光强度先增加后减小,最佳掺杂量为0.03,而对试样的色坐标 几乎没有影响;该系列荧光粉浓度淬灭机理为电偶极–电偶极(d-d)相互作用。  相似文献   

5.
采用高温固相法制备了Ca3Y2(Si3O9)2: Tb3+绿色荧光粉,研究了材料的光学性能。X 射线衍射(XRD)结果显示,掺杂少量的Tb3+,并未影响Ca3Y2(Si3O9)2材料 的晶相结构。Ca3Y2(Si3O9)2:Tb3+ 荧光粉的激发光谱由较强的4f75d1宽带吸收(200~300 nm )和较弱的4f-4f电子跃迁吸收 (300~500 nm)构成,主激发峰位于236nm。取波长分别为236、376和482nm的光 作为激发源时,发现样品的主发射峰均位于544 nm,对应Tb3+5D 4→7F5跃迁发射。以236nm 紫外光作为激发源,监测544nm主发射峰,随Tb3+浓度 的增大,Ca3Y2(Si 3O9)2:Tb3+的荧光寿命逐渐减小,但在实验范围内并未出现浓度猝灭现象。  相似文献   

6.
采用高温固相法合成了不同Si4+掺杂比例的 Gd1.6(W1-xSix)O 6:Eu3+0.4荧光粉,分析了Si4+掺杂对 Gd1.6(W1-xSix)O 6:Eu3+0.4荧光粉晶格结 构的影响,研究了不同Si4+掺杂比例下的XRD谱、激发光谱、发射光谱和衰减曲线。 结果发现:Si4+的掺杂改变了基质的结构,使得激活剂离子Eu3+周围的晶体场 改变,从而改变了荧光粉的发光效率,当Si4+ 的掺杂浓度达到0.4mol时,晶体对称性最差,粉体发光强度最大 。根据发射光谱和衰减曲线计算了样品的J-O强度参数 和无辐射跃迁几率,结果表明适量的Si4+掺杂可以抑制无辐射跃迁,提高发光强度。 计算结果与实验结果相符。  相似文献   

7.
采用高温固相反应合成了适合近紫外光-蓝光激 发的K2MgSiO4:Eu3+红色荧光粉,并对其发光特性进行了研究。X射线衍 射(XRD)测试结果表明,合成样品为纯相晶体。样品激发光谱由O2-→Eu3+电 荷迁 移带波长为(200~350nm)和Eu3+的特征激发峰(波长为350~500nm) 组成,主峰位于396nm波长处,次级峰位于466nm波长处。在396nm和466nm波长分别激发 下,样品发射峰均由Eu3+5D07FJ(J=0,1,2,3,4)能级跃迁产生,其中619nm波长处发射强度最大。 随着Eu3+掺杂浓度的增加,荧光粉的发光强度增大。在实验测定的浓度范 围内,未出现浓度猝灭现象。样品的色坐标位于红光区,且非常接近NTSC标准。样品发光强 度随温度增加出现温度猝灭现象,发 射峰位置并未出现明显红移。样品中,Eu3+5D0能 级上的荧光寿命约为0.535ms。  相似文献   

8.
荧光粉Sr2SiO4:Eu2+中不同格位发光研究   总被引:6,自引:6,他引:0  
采用高温固相反应法制备了Sr2SiO4:xEu2+荧光粉,研究Eu2+所占据的 Sr2SiO4中Sr1和Sr2两个不同格位及掺杂浓度和激发波长对格位发光的影响。荧 光粉发射光谱为一双峰的宽发射光谱,可拟合为峰值位置位于480nm 和530nm的两条高斯曲线,分别对应Eu2+所占据的Sr1和Sr2两 个不同格位的发射。随着 Eu2+掺杂浓度增加,Sr1和Sr2格位的发光强度均出现浓度猝灭现象,Sr2格位的 长波长发射峰出现明显红移现象,而Sr1格位的短波长发射峰发生红移-蓝移-红 移现象,这与Sr1和Sr2格位的优先占据以及格位间能量传递有关。随着激发波 长的增加,Sr2格位的长波长发射的发光强度与Sr1格位的短波长发射的发光强 度比值增加,占据不同格位的Eu2+对不同激发波长表现出明显的选择激发效应。  相似文献   

9.
采用高温固相法合成了蓝色荧光粉KNaCa2(PO4)2:Eu2+,利用X射线衍射(XRD)和光谱技术等表征了材料的性能。结果显示,少量Eu 2+的掺入并没有影响KNaCa2(PO4)2的晶体结构。 在399nm近紫外光激发下,KNaCa2(PO4)2:Eu2+材料发 射蓝光,发射光谱为400~600nm, 主发射峰位于471nm,对应Eu2+的4f65d1→ 4f7跃迁发射;471nm发射峰,对应的激发光 谱为250~450nm,主激发峰位于399nm,与近紫外芯片匹配很好。 以365nm近紫外光作为 激发源时,KNaCa2(PO4)2:Eu2+材料的发射强度约为商用蓝色荧光粉BAM:Eu 2+的85%;而以 399nm近紫外光作为激发源时,相较于BAM:Eu2+,KNaCa2(P O4)2:Eu2+材料具有更强的发射强 度。此外,KNaCa2(PO4)2:Eu2+和BAM:Eu2+的CIE色坐标接近,均位于蓝 色区域,色坐标分别 为(0.154,0.154)和(0.141,0.112)。研究结果 表明,KN aCa2(PO4)2:Eu2+是一种在三基色白光LED中有应用前景的蓝色荧光粉。  相似文献   

10.
采用传统高温固相法制备了不同Eu3+浓 度掺杂的Na2(La1-xEux) 2Ti3O10荧光粉,研究了Eu3+浓度 对样品结构及发光性质的影响。X射线衍射(XRD)结果表明Eu3+掺杂浓度不大于40%的 样品为四方相Na2La2Ti3O10;当 Eu3+浓度达到60%时,出现了正交相NaEuTiO4。对样品进行 激发、发射光谱的 测试发现,样品可被较 宽波段的紫外光有效激发,获得明亮的红橙色光发射,且Na2La2Ti3O10到Eu 3+存在有效的能量传递。利用 Van模型,证实了Eu3+间的交换相互作用是引发浓度猝灭的主要原因。利用Auzel模型 ,解释了Eu3+发光的自猝 灭行为。测试了样品在不同温度下的发射光谱和时间衰减曲线,确定样品发光产生 温度猝灭的主 要机理是Crossover过程。利用Arrhenius公式对实验数据进行拟合,确定激活能值约为0.26eV,说明Na2(La1-xEux)2Ti3O10荧光粉具有较好的发光热稳定性。  相似文献   

11.
高温固相法合成了共掺Si4+的LiGa5O 8:Cr3+长余辉材料,采用X射线衍射、荧光光谱、余辉发射光 谱、余辉衰减曲线和热释光对样品分别进行了表征,并分析了Si掺杂对LiGa5O8:Cr 3+发光性能的影响。结 果表明,所合成的LiGa5O8:Cr3+,Si4+材料能产生近红外长余辉发射,主 发射峰位于717nm,归属于Cr3+2E→4A 2 跃迁,共掺Si4+能显著提高余辉性能。掺杂浓度为0.25时,样 品的初始发光强度提高了3倍,余辉性能最佳, 余辉持续时间超过30 h。热释光曲线表明,共掺Si4+ 离子可增加有效陷阱数量,从而改善材料的余辉发光性能。  相似文献   

12.
采用高温固相法制备了Ca0.7Sr0.18M oO4:0.08 Eu3+、Ca0.7Sr0.27MoO4:0.02Bi3+和Ca0.7Sr0.18-1.5xMoO4:0.08Eu3+,xBi3+红色 荧光粉,考察Bi3+浓度对荧光粉发光性能的影响以及Bi3+与Eu3+间的能 量传递。通过X射线衍射(XRD)以及荧光的激发、发射光谱 对荧光粉样品进行表征。结果表明,制备的Ca0.7Sr0.15MoO4:0.08Eu3+ ,0.02Bi3+红色荧光粉属于白钨矿结构。在 Ca0.7Sr0.15MoO4:0.08Eu3+,0.02Bi3+红色荧光粉中,由于Bi 3+的掺杂将吸收的能量传递给激活离子Eu3+,其发光强度得到 增强。当Bi3+掺杂量x=0.02时,在312 nm激发下,主发 射峰 在616 nm处的相对发光强度最大,属于Eu3+5D07F2跃迁, 但掺杂浓度过高时会出现浓度猝灭现象,发光强度减弱。  相似文献   

13.
在氧化气氛下,采用固相反应法合成了一系列 KLa1-x(MoO4)2:Eu3+x红 色荧光粉。利 用X射线衍射仪、扫描电子显微镜和荧光分光光度计考察了KLa1-x(MoO4)2:Eu3+x荧光粉的 物相、形貌和发光强度。结果表明,激活剂Eu3+和助熔剂H3BO3的添加没有改变K La(MoO4)2的物相结构。KLa1-x(MoO4)2:Eu 3+x荧光粉可以被近紫外(393 nm )和蓝光(463 nm)有效 激发,主发射峰值位于616 nm附近,发射红光,归属为Eu3+5D07F2跃迁。393nm和463nm的激发波长与目前广泛使用的近紫外和蓝光LED芯片相匹配。添加质量分数为5%的H3BO3时 ,所制备的KLa1-x(MoO4)2:Eu3+x红色荧光粉的发光强度比未掺杂H3BO3时的发光强度提高了234%,色坐标 (0.639,0.339)比商用的Y2O3:Eu3+(0.625,0.338)更接近于美国电 视标准委员会标准(0.67),这表明这 种荧光粉具备成为商业化红色荧光粉的潜力。  相似文献   

14.
采用高温固相法制备了Sr5-x (PO4)2SiO4:xEu2+(x =0.010,0.015,0.020,0.025,0.050, 0.100)荧光粉,研究掺杂 浓度和测试温度对荧光粉发光性能的影响。随着Eu2+掺杂浓度的增加,发射强度呈现 先增大后减小的变化 趋势,并在x=0.015时达到最大值。Eu 2+掺杂浓度较低时(x≤0.025),Eu2+取代不同格位的 Sr2+,使得发射 光谱具有双发射峰;当x>0.025时,由于 存在Eu 1到Eu 2的能量传递使发射光谱中Eu 1的峰位消失,只存 在Eu 2的峰位。发射光谱随Eu2+浓度增大出现了红移现象,这是由于半径较小的Eu 2+(0.109nm)取代较 大的Sr2+(0.113nm)使得晶胞收缩,晶场强度增大,从而导 致Eu2+的5d能级劈裂程度增大,电子跃迁释 放能量降低。此外,测试温度增加时,发射光谱出现与Varshini方程不相符的蓝移现象,这 是晶格结构稳定性和声子辅助隧穿效应共同作用使较小波长的Eu 1的发射居于主导地位的结 果。  相似文献   

15.
采用高温固相法合成系列以ZnWO4基质、Dy 3+,Eu3+作为激发离子的白色荧光粉, 并通过X射线衍射(XRD)、荧光光谱对荧光粉的物相结构和发光性能进行了研究。在 387nm波长激 发下,Dy3+的2F96H15/2跃迁的蓝光发射及2F9→ 6H13/2的黄光发射最强。随着Dy3+的浓度 增大荧光粉ZnWO4:Dy3+的色坐标由黄光到白光移动,Dy3+的最佳掺杂浓度 是12%,此 时荧光粉的色坐标为(0.321,0.341)。在ZnWO4:Dy3+中加入Eu3+可以使 荧光粉的色 坐标更接近于标准白光并向暖白光区移动,当Dy3+的浓度为12%时,加入浓度1~8%的 Eu3+,其色坐标都在白光区且当其浓度等于2%时色坐标(0.346,0.339)最接近标准白光(0.33,0.33),并可观察到Dy3+向Eu3+的能量传递。  相似文献   

16.
Tb3+,Eu3+共掺杂SrMoO4的合成及发光性能研究   总被引:1,自引:1,他引:0  
采用水热法合成SrMoO4:Eu3+,SrMoO4:T b3+,Eu3+系列荧光粉。利用X射线衍射(XRD)、扫描电镜(SEM)、光电子能谱(EDS)、荧光光谱以及色坐标等研究了所制备荧光粉的结构、形貌和发光性能。XRD检测表 明,试样的 结构属四方晶系。EDS测试证明,合成样品含有相应组分元素,没有杂质元素。荧光光谱测 试表明, 在364、397、467nm波长紫 外光和可见光的激发下,SrMoO4:xEu3+的发光光 谱由[MoO4]原子团的3T1,3T21A1电荷迁移跃 迁峰(536nm波长,绿光),以及Eu3+5D 0→7F1(593nm波长,橙红光), 5D07F2(615nm,红光),5D07F 3(646nm,红光)跃迁发光峰组成。在243、288和396nm波长紫外 可见光激发下,SrMoO4:0.05Tb3+,0.05Eu3+的发射光谱包含了:Tb3+5D47F6(489nm波长,蓝光 )、5D 47F5(546nm波长,绿光)、5D47F4(582nm波长,黄光)跃迁的发射峰,Eu3+5D07F 1(593 nm波长,橙红光),5D07F 2(615nm 波长,红光),5D07F3(646nm波 长,红光)的发射峰。改 变激发波长,可以调节SrMoO4:0.05Tb3+,0.05Eu3+的发光颜色,存在Tb 3+→Eu3+的能量传递。  相似文献   

17.
采用高温固相法,制备了一系列以Ca0.7Sr 0.3Mo O4作为复合材料基质,以Eu3+为激活剂的混合钨钼酸盐红色荧光粉Ca0.7Sr 0.3Mo1-xWxO4:Eu 3+,并通过测试荧光粉的激发光 谱,发射光谱和XRD对荧光粉的物相结构和发光性能进行了研究。实验结果表明, 掺杂W6+的Ca0.7Sr0.3Mo1-xWxO4:Eu3+红色荧光粉的亮度得到提高,且其最佳掺杂浓度为 20%。 当W6+的掺杂浓度为20%时,Ca0.7Sr0.18Mo0.8W0.2O4:0.08Eu3+样品的衍射峰与CaMoO4(29-0351)标准卡片的衍射峰基本吻合。适当的加入电荷补偿剂Li 2CO3、Na2CO3、K2CO3可以提高Ca0.7Sr0.18Mo0.8W0.2O4:0.08Eu3+荧光粉亮度,最终结果表明当Li+的掺杂浓度为2% 时荧光粉的发光效果最好。色坐标分析结果表明:所制备的荧光粉的色坐标达到了国家标准 , 比商用的Y2O3:Eu3+红色荧光材料更接近于标准红色色坐标,具备成为商业化红 色荧光粉的潜力。  相似文献   

18.
采用传统的高温固相反应法成功制备Sr4Al14O25:Mn4+红色荧光粉。应用X射线粉末 衍射仪、扫描电子显微镜、荧光分光光度计等对样品形貌和结构进行表征,研究煅烧温度、 锰离子掺杂浓度对荧光粉发光性能的影响。实验结果表明,所制备的荧光粉具有从近紫外到 蓝光宽广区域的吸收谱,并能发出强烈的中心波长位于656 nm的红光,这主要是源于Mn 4+离 子的自旋禁止的2Eg4A2跃迁。在Sr4Al14O 25:Mn4+中,Mn4+离子更倾向于进入AlO6八面体 中的替代Al3+离 子,当Mn4+离子的掺杂浓度为x=0.02,煅烧温度 为1200 ℃时发光效率最高, 内量子效率达到46.85%。所制荧光粉的色坐标为(0.716,0.284),且发射谱与叶绿素在红 光区的吸收峰十分吻合,因而Sr4Al14O25:Mn4+可用作白光LEDs和植 物成长的LEDs红粉。  相似文献   

19.
利用高温固相法成功合成了非稀土类红色荧光粉 Mn4+:Li2TiO3,并对所制得的样品进行X射线衍射(XRD)、吸收谱和荧光发射谱等 表征。在波长为475nm的LED蓝光照射时,获得了最大强度位于〖J P 〗682nm波长处的红色荧光,量 子效率约为10%,其对应Mn4+自旋2Eg→4A 2g。计 算了晶体场强度因子Dq和Racah参数B、C,并据此分析了Mn4+在Li2TiO3中的电 子云重排效应。通 过改变掺杂浓度,分析了Mn4+掺杂在Li2TiO3中的浓度淬灭效 应。最后进行了LED白光性能 测试。  相似文献   

20.
田少华 《光电子.激光》2015,26(10):1942-1946
采用固相法于550℃灼烧4h,合成了Eu3+ 单掺杂的NaY(MoO4)2材料,研究了材料的 发光特性。X射线衍射(XRD)结果显示,掺杂少量杂质的材料仍为纯相的NaY(MoO4)2。以 393nm波长 近紫外光作为激发源时,NaY(MoO4)2:Eu3+可以发射主峰位于616nm波长的红色光,对应Eu3+5D0-7F2跃迁发射。研究发现,增大Eu3+掺杂量 时,对应材料的发射强度会逐渐增大,但是 未发现浓度猝灭现象,通过相应的衰减曲线解释了此结果。测量不同Eu3+掺杂量下 , NaY(MoO4)2:Eu3+的色坐标结果显示,色坐标基本不变,位于红色区域。上述 结果表明, NaY(MoO4)2:Eu3+在白光LEDs领域有一定的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号