首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了研究单质炸药FOX-12在发射药中的应用,采用溶剂法制备了三种不同FOX-12含量的发射药;采用DSC对发射药与FOX-12单体进行了分析对比,并进行了密闭爆发器试验;试验结果表明:通过DSC曲线分析,FOX-12发射药热分解温度与FOX-12单体本身热分解温度有关,随着配方中FOX-12含量的增加FOX-12发射药热分解温度增高;通过静态试验分析出FOX-12发射药燃烧稳定,随着配方中FOX-12含量的增加燃速较快;FOX-12-3发射药在高、低、常温下燃烧稳定,低温没有出现碎裂现象。  相似文献   

2.
通过中止燃烧试验及密闭爆发器试验研究了含FOX-7发射药的低压燃烧性能。结果表明:随着样品中FOX-7含量的增加,其燃速压力指数降低; 发射药燃烧过程中,药体表面形成连续的熔融层,抑制了RDX的爆燃,发射药燃烧一致性变好,有利于发射药低压下的稳定燃烧。抗冲强度试验结果表明,增加配方中FOX-7含量,发射药抗冲强度增大。  相似文献   

3.
药型尺寸对变燃速发射药燃烧渐增性的影响   总被引:2,自引:2,他引:2  
采用经典密闭爆发器的方法,研究变燃速发射药的药型尺寸与燃烧渐增性的关系。分析了不同配方、药型尺寸变燃速发射药的燃烧实验p-t曲线、L-B曲线特征,得出了配方、药型尺寸对变燃速发射药的燃烧性能影响规律。研究结果表明:在变燃速发射药内外层配方和层厚度确定时,长径比对燃烧渐增性的影响较为明显,发射药药粒长径比越大,燃烧渐增性越好;对双层结构的变燃速发射药,在一定长径比范围内(1.5/1~2.0/1)适当增加阻燃层中高分子含量有利于改善燃烧渐增性。  相似文献   

4.
针对探讨硝胺类发射药的燃速预估模型,在分析硝胺炸药在燃烧分解产物热分解规律的基础上,运用近年来提出的火药燃速预估方法,推导硝铵发射药的燃速公式及压力指数公式。编写硝铵发射药燃速计算软件。在0~400 MPa压力范围内,对硝胺类发射药的燃速进行理论预估,并对3种硝铵发射药的燃烧计算值与相应的试验数据进行比较。分析结果表明,本模型是可行的,适合硝铵发射药的燃速预估。  相似文献   

5.
刘平  马忠亮  王率宇  柴俊 《含能材料》2015,23(3):243-247
为模拟七孔变燃速发射药的燃烧性能,建立了七孔变燃速发射药的燃烧模型。在几何燃烧定律的基础上推导出燃气生成猛度Γ和已燃发射药百分数Ψ的函数关系。通过编程计算得到Γ-Ψ曲线。分析了燃速比、速燃层内孔径、长径比和缓燃层厚度与燃速层厚度之比对七孔变燃速发射药燃烧渐增性的影响。结果表明:速燃层和缓燃层的燃速比为1.5~2.5,长径比为2~3,缓燃层厚度与速燃层厚度之比为0.1~0.22,速燃层内孔径为0.2~0.3mm的七孔变燃速发射药有较好的燃烧渐增性。  相似文献   

6.
侵蚀燃烧在发射装药内弹道中的应用研究   总被引:2,自引:0,他引:2  
张洪林 《兵工学报》2008,29(2):129-133
侵蚀燃烧是具有内孔燃烧火药的一种普遍现象,应用侵蚀燃烧可改变火药燃烧的规律。由于火炮发射装药装填密度的变化,不同装填密度发射药所受的内孔与外部压力也不同,这种压力差使发射药内孔在火炮膛内燃烧时发生侵蚀燃烧。利用发射药内孔燃气流动的流速、传热和冲刷对燃速的影响,研究了火炮发射装药的侵蚀燃烧对发射药燃速的影响,建立了发射装药侵蚀燃烧数学模型,分析了发射药装填密度、内孔的孔径、药粒长度等变化所引起的侵蚀燃烧变化及对发射装药内弹道性能的影响。提出了在变装药中,利用侵蚀燃烧提高小装药量、小射程用发射装药膛压的方法。  相似文献   

7.
采用DSC-TG、密闭爆发器、中止燃烧试验装置,研究了含N-脒基脲二硝酰胺盐(FOX-12)的硝胺发射药的热分解和燃烧特性。结果表明:该硝胺发射药中的NC-NG体系和FOX-12一起开始分解,加入FOX-12使硝胺发射药的燃速压力指数降低,其值小于1,随着FOX-12含量的增加,硝胺发射药的压力指数在低压段(10~20 MPa)降低幅度大于中高压段(40~240 MPa)的幅度。  相似文献   

8.
用高压差示扫描量热法(DSC)与密闭爆发器实验,对比研究了均质叠氮硝胺发射药(DA3),和含DA3、RDX质量分数分别为85%、15%的DAR15发射药及含DA3、RDX质量分数分别为75%、25%的DAR25发射药的热分解及燃烧性能。结果表明,DAR15及DAR25发射药的DSC有两个放热峰,峰值温度约为210℃第一个放热峰由DA3分解所致,峰值温度约为236℃的第二个放热峰由RDX的分解引起,而DA3仅呈现一个放热峰。随着RDX含量增加,第一个峰的放热量减少,第二个峰的放热量增加。与DA3相比,DAR15及DAR25在40~120 MPa压力范围内燃速压力指数变大,在120 MPa~pdpm(压力陡度的最大值所对应压力)压力范围内燃速压力指数降低。RDX的引入使DAR15及DAR25发射药的起始燃速及起始燃气生成猛度降低,燃烧渐增性提高。  相似文献   

9.
为了研究药型结构对发射药燃速测试结果的影响,以高能硝胺发射药为研究对象,采用密闭爆发器燃烧实验和数据处理的分析方法,研究了4种药型及其不同内孔长径比发射药的燃速特性及其变化规律;采用中止燃烧实验研究了发射药内孔长径比对侵蚀燃烧的影响,并与太根发射药对比研究了燃速特性对侵蚀燃烧的影响关系。结果表明,多孔药的燃速压力指数明显小于单孔药,在内孔长径比相同的条件下,随着发射药内孔数量的增加,正比式燃速系数减小,燃速压力指数减小;在药型相同的条件下,随着内孔长径比增大,发射药侵蚀燃烧现象加剧,正比式燃速系数增大,燃速压力指数减小;燃速较高的发射药,侵蚀燃烧现象对燃速参数测试结果的影响更大。  相似文献   

10.
为了研究片状变燃速发射药在高低温循环保存下的燃烧稳定性,将样品形貌及燃烧性能变化作为考察依据,以70℃高温10 h,-50℃低温10 h为一个循环周期,对片状变燃速发射药样品进行了20次高低温循环保存。通过光学显微镜观察了高低温循环前后片状变燃速发射药的表面形貌,利用密闭爆发器测试了高温50℃、常温20℃、低温-40℃下高低温循环前后片状变燃速发射药的燃烧性能。显微观测发现经高低温循环后,片状变燃速发射药表层气泡扩大增多,发射药断面出现塑性形变现象,内外层界面结合保持紧密,没有开裂与脱黏。密闭爆发器试验反映了该类型发射药经过高低温循环后,高温、常温、低温下动态活度曲线与高低温循环前都基本重合,动态活度变化值ΔL最大值出现在低温条件下,为2.57%,能量渐增性释放规律基本不变。高低温循环下,片状变燃速发射药在高压常温-低温阶段的燃速温度系数对比原样在相同条件下显著降低,高温与低温下片状变燃速发射药的压力指数差距对比原样在相同条件下减小。结果表明,片状变燃速发射药在高低温循环条件下界面和燃烧性能稳定,具有较好的变温贮存稳定性。  相似文献   

11.
针对传统工艺无法制备复杂结构发射药的问题,为探索提高发射药燃面渐增性新途径,采用3D直写打印技术,设计并打印了具有较高燃面渐增性的硝化棉基内嵌多方孔发射药。对3D打印的硝化棉基内嵌多方孔发射药进行了定容燃烧和内弹道性能表征。结果表明,以硝化棉、含能增塑剂和溶剂配制的浆料为打印物料,打印的硝化棉基内嵌多方孔发射药符合设计的燃面渐增性燃烧预期;受打印针头直径、溶棉比、醇酮比、溶剂挥发速度等因素的影响,直写打印的发射药设计尺寸和实际尺寸有一定偏差;12.7 mm机枪弹道初步试验表明,内嵌多方孔NC-120发射药和制式D-4/7混合装药16 g,装药比例1∶1时,膛压为314.2 MPa,射击初速为854.1 m·s-1,实现了直写打印内嵌多方孔发射药在膛内正常、稳定燃烧,达到了与制式发射药相似的水平,但充分利用直写打印内嵌多方孔发射药需要进一步优化设计药形、弧厚、内外层弧厚匹配等参数。  相似文献   

12.
采用燃速-靶线法研究了1,1-二氨基-2,2-二硝基乙烯(FOX-7)的含量、粒度及不同铅盐/铜盐/炭黑三元复合燃烧催化剂对硝化棉/三羟甲基乙烷三硝酸酯(NC/TMETN)低敏感无烟螺压改性双基推进剂燃烧性能的影响。结果表明,随着NC/TMETN基推进剂配方中FOX-7含量的增加,燃速先上升后下降,当FOX-7含量为25%时,可将基础配方10 MPa下的燃速由5.87 mm·s^-1提高至14.90 mm·s^-1,当FOX-7含量由25%增至30%时,10 MPa下的燃速由14.90 mm·s^-1降至12.78 mm·s^-1,FOX-7含量由5%增加至30%时,6~16 MPa下的压力指数由0.97降至0.60;用等量细颗粒的FOX-7取代粗颗粒时,可使推进剂10 MPa下的燃速降低1.16 mm·s^-1,使推进剂6~14 MPa各压力区间的压力指数增大;B-Pb/B-Cu/CB催化剂可以将NC/TMETN/FOX-7基改性双基推进剂10 MPa下燃速由未加催化剂时的14.90 mm·s^-1提高至18.65 mm·s^-1,6~16 MPa下的压力指数由未加催化剂时的0.63降至0.35。  相似文献   

13.
为解决随行装药的点火延迟控制及能量释放稳定性问题,提出了一种新的随行装药方案,采用密闭爆发器与30 mm火炮试验对其延时机构的有效性、能量释放的稳定性及燃速进行了研究。结果表明:依托随行装药高密实性,延时机构可对随行装药点火延迟时间进行有效控制;主装药量一定,延时机构厚度存在较佳值,以获得较优的随行装药效应;试验结果基本稳定,初步验证了随行装药结构可靠,燃烧性能基本稳定,有较好的能量释放规律;随行装药具有较高的燃速、燃气释放速率,多-125发射药含量95%时,其燃速最大值是6/7发射药的46倍,最大动态活度达7.4 MPa-1·s-1. 改变随行装药中多-125发射药的含量,其燃速、燃气释放速率可调。  相似文献   

14.
硝胺火药燃速特性与热分解特性的相关性   总被引:3,自引:0,他引:3  
通过对四类、三十几种配方的硝胺火药进行系统的密闭爆发器实验及差热分析,发现硝胺火药燃速压力曲线转折与火药的二次热分解特性紧密相关,由此可推断,火药燃烧时其受压表面热分解反应过程是决定火药燃速稳定的控制步骤,提出了一种新的密闭爆发器燃速压力曲线性质的分析方法,并提出用β值大小来表征火药的二次热分解相对强度,以便用来判断火药燃速压力曲线的转折性质。这些概念和方法对于分析硝胺火药燃速特性具有重要实用价值。  相似文献   

15.
为研究存在侵蚀燃烧的发射药高、低温内弹道性能,分析了发射药初温变化引起的火药热焓变化及对侵蚀燃烧的影响,修正了常温发射药的侵蚀函数,得到了高、低温多孔药燃速的数学表达式,建立了多孔发射药高、低温内弹道数学模型。应用该模型对某大口径舰炮高、低温内弹道进行仿真,计算结果和试验值一致性较好。通过对比仿真研究可得结论:考虑火药热焓变化对侵蚀燃烧影响的多孔发射药高、低温内弹道仿真结果更接近试验值。  相似文献   

16.
纳米纤维素纤维在高能太根发射药中的应用   总被引:1,自引:1,他引:0  
夏勇  梁昊  何卫东 《含能材料》2018,26(2):118-122
为了改善高能太根发射药的力学性能,在高能太根发射药配方的基础上,添加少量(质量分数0.5%,1.0%,1.5%,2.0%)由湿木浆纤维素得到的纳米纤维素纤维(CNFs),制备了含CNFs的高能太根发射药。采用扫描电镜、热重分析仪和差示扫描量热仪研究了添加CNFs前后高能太根发射药的表面结构和热分解性能。采用简支梁冲击试验机和密闭爆发器试验研究了含CNFs高能太根发射药的冲击强度及能量性能。结果表明,少量添加CNFs可明显提高高能太根发射药的低温冲击强度,对热分解性能影响很小。与高能太根发射药(参比样)相比,添加0.5%CNFs的高能太根发射药,在-40℃低温和20℃室温下,冲击强度分别提高了30.4%和8.9%。随着CNFs含量增加,火药力逐渐降低,余容逐渐上升,燃速逐渐减小,压力指数小幅度上升。当CNFs的添加量为0.5%时,高能太根发射药的火药力为1191.91 k J·kg~(-1),余容为0.870 L·kg~(-1),压力指数为1.06,分别较参比样减少了1.9%、增加了5.1%和增加了4.2%。  相似文献   

17.
随行装药优化设计   总被引:1,自引:0,他引:1  
为了优选出30 mm随行装药结构的点火延迟时间、随行药燃速和随行药火药力三者的优化组合,保证在最大膛压不超出指标的条件下获得较高的弹丸初速。采用固体随行装药零维内弹道模型编写程序求数值解,在此基础上采用正交试验设计法设计随行装药结构的优化试验方案,利用正交表安排数值模拟试验,运用综合平衡法分析试验结果,得出优选方案并用数值模拟试验验证。优选方案为:点火延迟时间1.766 ms,随行药燃速系数2.67×10-8m/(s.pan),随行药火药力1 050 MPa.dm3/kg。验证结果说明用正交法安排数值模拟试验可以优选出较好的随行装药结构参数。  相似文献   

18.
药型对层状发射药燃烧渐增性的影响   总被引:3,自引:3,他引:0  
为了研究层状发射药的燃烧渐增性能,建立了该类药型相应的形状函数,对影响层状发射药燃烧渐增性能的四个主要因素(即缓燃层厚度比例x<,1>、燃速比k、药片厚宽比β及黑索今RDX含量)取值相同的情况下,根据药型和形状函数分别进行了计算和分析,得到了相对已燃质量ψ、相对表面积σ随相对已燃厚度z的变化曲线.结果表明:与多层片状层...  相似文献   

19.
采用密闭爆发器试验、14.5mm机枪试验、加速老化试验等方法,研究了钝感剂分子量对新型的聚合物钝感包覆枪炮发射药性能的影响。结果表明与DBP钝感火药及未钝感火药相比,聚合物钝感包覆火药初始燃速较低,燃烧渐增性较强,内弹道效率较高,试验结果还显示聚合物钝感剂迁移比DBP小,且聚合物钝感剂迁移性随其分子量增大而下降。  相似文献   

20.
赵瑛  刘毅  杨丽侠  张邹邹 《含能材料》2012,20(2):188-192
用密闭爆发器实验、差示扫描量热法(DSC)和扫描电子显微镜(SEM)研究了3,3-二叠氮甲基氧丁环/3-叠氮甲基-3-甲基氧丁环(BAMO/AMMO)基含能热塑性弹性体(ETPE)发射药和RGD7硝胺发射药的燃烧性能及热行为。结果表明:与RGD7硝胺发射药相比,ETPE发射药燃烧时间较长,燃速较低,燃速压力指数n大于1,而RGD7硝胺发射药燃速压力指数小于1。对于RGD7硝胺发射药,RDX的熔融吸热峰(204.8℃)不明显,且分解放热峰(240℃)滞后于硝化棉/硝化甘油(NC/NG)(194℃),而ETPE发射药中poly(BAMO/AMMO)分解温度(263℃)高于RDX(240℃)。ETPE发射药和RGD7硝胺发射药的不同燃烧性能归因于发射药中主组分的不同热行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号