首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
弹状流的液弹部分受气弹尾部影响,其水力特性参数沿流动方向存在分区的不一致性。本文对竖直窄矩形通道中弹状流液弹内参数的分布特性进行了研究。结果表明:液弹内气泡在近壁面附近所受径向力较为平衡,气泡频率较大;随着远离气弹尾部,管道中间气泡频率逐渐增大。根据气泡频率波动变化将液弹分为3个区域,尾流区占液弹长度的40%~45%,过渡区占10%~15%,主流区占40%~50%。尾流区和主流区内,空泡份额呈“三峰型”分布;随着气相流速的增加,尾流区内近壁面处峰值逐渐增大,管道中间峰值逐渐下降,但主流区内情况相反。气泡直径随气相流速的增大而变大,且液弹内气泡聚合和破碎现象较少。  相似文献   

2.
竖直窄矩形通道内弹状流中液膜特性研究   总被引:1,自引:1,他引:0  
气液两相弹状流广泛存在于工程领域,弹状流中液膜特性对弹状流模型的建立具有重要意义。为此利用高速摄像系统,对竖直窄矩形通道(3.25 mm×40 mm)内弹状流中液膜进行了可视化研究。实验中发现窄矩形通道中气弹左右两侧窄边液膜厚度不等且存在波动,但其对两侧液膜速度影响较小,两侧液膜速度相等。液膜脱离厚度主要受两相流速及气弹长度影响。液膜脱离速度随液相折算速度增加而增大;在低液相流速时,随气相折算速度增加而减小;当液相流速≥1.204 m/s时,液膜不下落,液膜脱离速度随气相速度变化较小,主要受液相流速影响。  相似文献   

3.
以空气和水为工质,应用高速摄像仪,对竖直窄矩形通道(3.25 mm×40 mm)内气液两相弹状流进行了可视化实验研究。气、液相表观速度分别为0.1~2.51 m/s和0.16~2.62 m/s,工作压力为常压。实验中发现窄矩形通道内弹状流与圆管中存在较大差别,气弹多发生变形,高液相流速时变形更为严重。窄边液膜含气量较高,在高液相流速时窄边液膜不下落,宽边液膜中含有由气弹头部进入和气弹尾部进入的气泡。气弹速度受气弹头部形状和宽度影响较大,受气弹长度影响较小。气弹速度可由Ishii & Jones-Zuber模型计算,但在低液相折算速度时偏差较大,其主要原因为漂移速度计算值较实验值偏小。  相似文献   

4.
气弹速度和液膜厚度作为弹状流工况下的关键参数,在传热分析和力学分析中具有重要意义。本文以空气-水为介质,采用高速摄影机和印刷电路板式(PCB)液膜厚度传感器,对高1.9 mm×宽68 mm的水平窄矩形通道内气弹运动特性进行研究。液相雷诺数(Rel)<2500,矩形通道内为层流区;Rel≥2500,矩形通道内为湍流区,基于气-液两相混合速度分别拟合了气弹运动速度的预测关系式,结果表明,层流区分布系数(C0)可采用Ishii关系式计算且漂移速度为0;而湍流区C0为1.0。当气弹雷诺数(Reb)<3100时,气弹底部液膜厚度(δb)随毛细管数的增大而增大;而在Reb≥3100时,δb表现出波动性。现有的δb预测关系式不适用于窄矩形通道,在考虑通道高宽比的影响下提出了一个新的δb预测关系式,对文献中210个数据进行了验证,预测误差均在±20%内。  相似文献   

5.
本文通过可视化方法对竖直与倾斜条件下矩形通道内弹状流单元的参数进行研究,尝试给出摇摆状态下矩形通道内弹状流压力模型。通过图像处理给出气弹段空泡份额以及两相速度的计算关系式,并验证漂移流模型在液弹段的适用性,给出弹状流单元的长度份额以及空泡份额的计算关系式。根据实验结果给出摇摆条件下矩形通道内弹状流压力组分的模型,并重点分析摩擦压降模型的适用程度。结果表明,弹状流压力模型可很好地预测摇摆条件下矩形通道内的压力。  相似文献   

6.
本文以去离子水为实验介质,对截面为3 mm×43 mm的三面加热窄矩形通道内充分发展的弹状流进行实验研究。借助高速摄影仪对弹状流进行可视化实验观察,观察到弹状流的4种演变行为:弹状流充分发展、夹心型弹状流的形成、小汽弹合并成大汽弹、大汽弹合并成加长型弹状流。分析了部分热工参数对弹状流截面含气率的影响,通过引入雷诺数,对三面加热窄矩形通道内弹状流的实验数据进行非线性回归分析,得到适用于三面加热窄矩形通道内弹状流截面含气率的计算关系式。结果表明,新拟合得到的关系式能较准确地预测三面加热窄矩形通道内弹状流的截面含气率,其预测值相对误差为12.36%。  相似文献   

7.
以空气和水为工质,对竖直向上矩形通道(40 mm×1.41 mm,40 mm×10 mm)两相流流型特性进行了可视化研究。气液相表观速度分别为0.01~0.59 m/s和0.02~3.72 m/s。基于3个经典的泡状流向弹状流转变准则,考虑矩形通道的尺寸效应,导出了泡状流向弹状流转变时的临界空泡份额为0.23。以窄边宽度2.5 mm为界,将矩形通道分为小通道和常规通道两类,对泡状流向弹状流转变准则进行修正,修正准则能很好地预测实验值。为进一步验证修正准则的准确性和适用性,将修正准则与Mishima、Wilmarth和Sadatomi等的实验数据进行了对比,结果显示修正准则同样具有较好的预测效果。  相似文献   

8.
在两相流系统中,流型影响系统的摩擦阻力和传热等特性,准确判定不同流型对于两相流的计算具有重要意义。对于窄缝通道内的气液两相流动,特别是矩形窄缝通道内流型转变准则,已有学者进行了一定的实验研究,但由于实验装置及工况的限制,目前尚缺乏统一且适用性较广的流型转变准则,已有的基于矩形通道的流型判定准则适用性也有待于进一步评估。本文以空气-水为工质,对竖直矩形窄缝通道内泡状流-弹状流流型转变准则进行分析研究,基于1 168个流型实验数据,采用分界成功率对已有转变准则对于实验数据的适用性进行定量综合评价,并针对流型转变原理开展理论分析,引入无量纲数约束因子Co,建立考虑工质物性和流道尺寸、精度更高、适用范围更广的窄缝通道内泡状流-弹状流流型转变准则。本文结论可为反应堆换热元件和紧凑式换热器设计计算提供依据。  相似文献   

9.
竖直小通道内弹状流气弹长度的计算模型   总被引:1,自引:1,他引:0  
针对小通道内弹状流建立了气弹长度计算模型,并结合实验研究,对模型进行验证。可视化实验以空气和水为工质,矩形通道截面尺寸为3.25 mm×43 mm,分气、液相Re范围分别为62~360和1255~3707。结果显示,模型的预测值与实验数据具有较好的一致性,平均绝对误差为26.8%。此外,将Mishima和Cheng等的实验数据与计算模型进行对比,实验段包括矩形通道(40 mm×1.07 mm,40 mm×2.45 mm)和圆形通道(De=4 mm),平均绝对误差为34.9%,说明计算模型具有较好的适用性。  相似文献   

10.
基于流体体积函数( VOF)模型,对矩形窄流道中不同液相流速下泰勒气泡及周围流场特性进行分析.结果表明,无量纲气泡速度随毛细力数(Ca)变化关系与垂直方形流道实验结果符合较好.壁面切应力在气泡长度方向上不断变大,直到进入尾流区,产生强烈的无规则变化.随着液体质量流速的增大,泰勒气泡变得更尖锐,液膜厚度变厚,但壁面切应力...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号