共查询到19条相似文献,搜索用时 74 毫秒
1.
2.
燃料电池用质子交换膜的研究进展 总被引:1,自引:0,他引:1
介绍了三类质子交换膜,包括全氟磺酸膜、磺化聚芳烃系列膜和复合型质子交换膜,主要分析了每种膜的优缺点以及在质子交换膜燃料电池(PEMFC)中的应用前景. 相似文献
3.
燃料电池用质子交换膜 总被引:1,自引:0,他引:1
陈晓勇 《化学推进剂与高分子材料》2009,7(3):16-21
介绍了燃料电池用含氟质子交换膜的研究历程、应用、结构与性能的关系及当前针对性的改进,归纳了磺化碳氢聚合物、有机无机复合物、离子交联聚合物和无机固体酸等非氟质子交换膜的代表性研究,指出了各利非氟质子交换膜的优点和不足,对质子交换膜的发展做了相应的展望。 相似文献
4.
5.
综述了质子交换膜在直接甲醇燃料电池中的作用和要求,目前质子交换膜的研究进展,重点介绍了适用于直接甲醇燃料电池用质子交换膜的各种材料的改性方法。按照物理和化学两种方法对几类质子交换膜材料进行改性。同时对比了改性前和改性后各种聚合物膜的物性特点。 相似文献
6.
质子交换膜燃料电池技术的发展动向 总被引:3,自引:0,他引:3
目前 ,燃料电池技术已经从实验室研究逐渐走向规模化、实用化的开发 ,其研发模式也由单纯的科研机构研究转向政府、企业和科研机构三者的结合。本文评述了燃料电池尤其是质子交换膜燃料电池的应用和研发状况。简介了国际国内燃料电池领域内政府的支持和推动 ,以及企业的开发情况。并提出了燃料电池在普及中所面临的关键问题 相似文献
7.
8.
9.
质子交换膜燃料电池技术的发展及应用 总被引:3,自引:0,他引:3
概述了质子交换膜燃料电池(PEMFC)的发展历史和现状,并对其应用前景进行了展望;对质子交换膜燃料电池的膜、膜电极、电催化剂和双极板等关键技术进行了简要介绍。 相似文献
10.
张东方 《化学工业与工程技术》2003,24(6):33-35
膜电极(MEA)是质子交换膜燃料电池(PEMFC)的核心技术。膜电极包含的催化剂层、材料和结构等对PEMFC的性能影响很大。催化剂面层上供三相(质子、电子、气体)用的通道对于电池使用时的催化作用是必不可少的。介绍了近几年催化剂的研究进展,看重对三相通道进行了详细叙述。也回顾了一些用于改善催化剂活性的其他方法,如阴极催化、合金催化剂,根据这些进展,对今后的研究方向提出了建议。 相似文献
11.
A 5-cell proton exchange membrane fuel cell (PEMFC) stack with different types of membrane electrode assemblies (MEAs) was tested to compare their performances and electrochemical characteristics. The experimental data were obtained with a stack of 5 cells and active area of 125 cm2. The stack consisted of different Nafion® and hydrocarbon membranes with the same types of electrocatalyst. The membranes were installed in different cells and in the same stack. Polarization and voltage measurement data were obtained to compare their performances at different temperatures and anode humidity conditions. Also, impedance spectroscopy data were obtained in similar manner to compare the differences in their resistance. 相似文献
12.
Tirupati R. Keshav 《Chemical engineering science》2007,62(24):7515-7522
Spreading of liquid droplets over solid surfaces is a fundamental process with a number of applications including electro-chemical reactions on catalyst surface in membrane electrode assembly of proton exchange membrane (PEM) fuel cell and direct alcohol fuel cell. The spreading process of droplet on the PEM porous substrate consists of two phenomena, e.g., spreading of droplet on PEM surface and imbibition of droplet into PEM porous substrate. The shrinkage of the droplet base occurs due to the suction of the liquid from the droplet into the PEM porous substrate. As a result of these two competing processes, the radius of the drop base goes through a maximum with time. The variation of droplet base and front diameter with time on the PEM porous substrate is monitored using microscope fitted with CCD camera and a PC. It is seen that the droplet base diameter goes through a maximum with time, whereas the front diameter increases continuously with time. Further, methanol droplet spreading and wetting front movement was faster than that for ethanol and deionized water. As the PEM porous substrate is wetted and imbibed well by the methanol compared to ethanol, it is expected that the cross over of methanol would be higher than that of ethanol in direct alcohol fuel cell. It should be noted that cross over of alcohol from anode side to cathode side through membrane is detrimental to the fuel cell operation. The experimental data on the variation of droplet base and wetting front diameter with time is predicted by the model available in the literature. 相似文献
13.
Daisuke Tashima Yujiro SakaguchiHiroaki Hidaka Masahisa Otsubo 《Chemical Engineering Research and Design》2011,89(7):1088-1093
The purpose of this research is to develop a standard preparation method for membrane electrode assemblies (MEAs). Therefore, the preparation method for multilayered MEAs with gas diffusion layers (GDLs) and the degree to which polymer membranes deteriorate by heating were studied. As a result, improvement of power density by making multi catalyst layers provides a solution to some problems found in thin polymer membranes. In addition, it was found that improving the diffusion of gas through two-layer GDLs in cathode (duct side: carbon paper, catalyst layer side: carbon cross) results in a cross leak reduction. Moreover, a making condition of MEAs was optimized by varying the temperatures used for the multi catalyst layers and two-layer GDLs. The analysis of heat deterioration of the Nafion membrane using X-ray photoelectron spectroscopy (XPS) indicates that the optimal hot press temperature is 130 °C. 相似文献
14.
氢气中杂质种类和含量水平对加氢站关键设备、氢燃料电池汽车供氢系统、燃料电池核心部件的性能和寿命有着重要的影响。国际标准化组织(ISO)以及各国标准化机构依据技术发展趋势和产业化进程特点,研制构建了系统完备、指标要求合理的燃料电池用氢质量标准体系,在氢能和燃料电池汽车技术发展中起到了基础支撑作用。本文回顾了质子交换膜燃料电池用氢质量标准的发展历程,对比分析了国内外标准的差异,认为我国质子交换膜燃料电池用氢的质量标准对杂质组分的限值要求与国际先进标准是一致的,我国产业界应充分重视标准的实施应用,积累更多的试验数据,为主导或参与国际标准制修订工作奠定基础。 相似文献
15.
New in situ and minimally invasive methods are needed to quantify the presence of liquid water and ice within operating proton exchange membrane fuel cells. A volume sensitive residence time distribution technique was developed based on CO2 tracer and infrared detection. The method, components and operation are detailed (tracer injection and detection, data scaling, calibration, and pressure correction). The measurement system was characterized by an electronic signal processing response time of 43 ms, accuracy and repeatability better than 0.5-5% error in transit time measurement and sufficient sensitivity to detect less than 10% changes in flow field channel and gas diffusion electrode void volumes. Results obtained with a simplified model fuel cell (single flow field channel, absence and presence of a gas diffusion layer) revealed the presence of two time resolved mechanistic steps for negative tracer step cases (convective tracer removal from flow field channel, diffusive tracer removal from gas diffusion layer). A one-dimensional model was derived using convective diffusion in flow field channels and cross-flow tracer exchange proportional to the concentration difference between flow field channel and gas diffusion electrode. Numerical computations showed good agreement with the model fuel cell experimental results. 相似文献
16.
Effect of gas diffusion layer compression on the performance in a proton exchange membrane fuel cell
This study investigates the gas permeability, bulk density, thickness and conductivity of two types of gas diffusion layer (OC14, NC14) as a function of the compressed thickness. The compression of a gas diffusion layer reduces gas permeability and contact resistance. The performance is measured using a single proton exchange membrane fuel cell (PEMFC) with an active area of 25 cm2. The results provide an optimum value of compression ratio that maximizes the cell performance. For OC14 the optimum compression ratio is about 64%, whereas for NC14 it is 59%. The best performances are 375 mA/cm2 and 296 mA/cm2 at 0.7 V, respectively. These results concerning the balance between compression and performance provide vital information for the fabrication of stacks and support for industrial applications. 相似文献
17.
通过设计阴极流道宽度为1 mm与2 mm的单电池,研究了不同温度下闭口中压氢-氧质子交换膜燃料电池的运行特性。结果表明:(1)2 mm的电池有较好的闭口稳定运行特性,在800 mA·cm-2下,1 mm的电池闭口运行时,大约经过3 min,电压从0.7 V下降到0.5V,而2 mm的流场结构能实现电池53 min的运行;(2)电池性能随温度的升高而下降,相对于65℃运行,温度为80℃时,1mm的电池闭口运行时,大约经过1.7 min,电压从0.69 V下降到0.5 V,此时为维持电池的高性能运行,氧气侧所需的排放时间越短;(3)电池的内阻随温度的升高而增大,高温时增幅较小。 相似文献
18.
Luca Paturzo Angelo Basile Adolfo Iulianelli Johannes C. Jansen Irene Gatto Enza Passalacqua 《Catalysis Today》2005,104(2-4):213-218
A method for the sulfonation of PEEK-WC, a glassy poly(ether ether ketone) with sulphuric acid is presented. Depending on the reaction time, polymers with ion exchange capacity (IEC) from 0.30 to 0.76 meqH+/g are obtained, as determined by titration with NaOH solutions. The thermal properties of the polymers were studied by differential scanning calorimetry, showing that the glass transition temperature increases with increasing degree of sulfonation, from 224 °C for pure PEEK-WC to 246 °C for the polymer having an IEC of 0.76 meqH+/g. The sulfonated polymers were used to prepare proton exchange membranes for possible application in fuel cells. Dense membranes were prepared by solvent evaporation, using DMA as the solvent. The transport properties of the membranes were determined in terms of water uptake and permeability for hydrogen and oxygen. Electrochemical characterization was performed by measuring cell voltage and power density curves as a function of current density at different working temperatures and the results were compared with those of a commercial Nafion membrane. A power density of 284 mW/cm2 was obtained for S-PEEK-WC membrane at 120 °C in H2/air fuel cell, slightly above the corresponding value found for Nafion. 相似文献