首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The present study numerically solves the flow and thermal fields in the full geometry of heat exchanger modeling with frost layer presence on the heat exchanger surface. The effects of air inlet velocity, air inlet temperature, frost layer thickness, fin pitch, fin thickness, and heat exchanger shape on the thermo-hydraulic performance of a fin-tube heat exchanger are investigated. Heat transfer rate rises with increasing air inlet velocity and temperature, and decreasing frost layer thickness and fin pitch. Pressure drop rises with increasing air inlet velocity and frost layer thickness, and decreasing fin pitch. The effect of fin thickness on heat transfer and pressure drop is negligible. Based on the present results, we derived the correlations, which express pressure drop and temperature difference between air inlet and outlet as a function of air inlet velocity and temperature, as well as frost layer thickness.  相似文献   

2.
张哲  田津津 《流体机械》2007,35(9):72-76
研究了入口空气相对湿度、温度以及风速对风冷热泵蒸发器结霜的影响,获得了各个入口空气参数对蒸发器结霜厚度和换热量的影响规律.研究发现空气入口相对湿度等参数对蒸发器结霜以及换热性能有很大的影响,结霜严重地影响了蒸发器换热性能.计算结果和实验测试的结果吻合良好.  相似文献   

3.
A general distributed model with a non-steady-state heat exchanger model coupled with a frost model was developed to study the dynamic behavior of an airside heat exchanger in an air-to-water heat pump heater/chiller unit. The effects of water vapor diffusion and uneven fin temperature distribution were considered. The model was found to agree well with reported experimental results. Compared with the routine model, the present model has higher precision of frost layer thickness especially on the fin surface. Results include the propagation of frost formation along the tube and its effect on the dynamic characteristics of refrigerant, air, and tube sides. According to the results, the temperature difference between air and tube surface temperature was proposed to be the main driving force of frosting. Tube surface temperature is the most important factor affecting frosting when there is little variation in air humidity. Frost at the fin base was found to be thicker than that at the fin tip due to the fact that the frost layer grows faster with lower tube surface temperature.  相似文献   

4.
影响风冷式热泵蒸发器结霜性能因素的研究   总被引:8,自引:2,他引:8  
张哲  厉彦忠  王强 《流体机械》2002,30(11):46-49
研究了在热泵工况下变化参数对风冷热泵蒸发器霜形成率的影响,获得了入口空气相对湿度、温度、流速以及翅片间距等参数对蒸发器结霜量和空气侧压降的变化规律。计算结果和实验测试的结果吻合较好,研究结论对翅片管式蒸发器设计具有重要意义。  相似文献   

5.
The thermal performance of a Z shape enthalpy heat exchanger utilising 70 gsm Kraft paper as the heat and moisture transfer surface has been investigated. Effects of different inlet air humidity ratio conditions on the heat exchanger effectiveness and on the energy recovered by the heat exchanger have been the main focus of this investigation. A typical air conditioning cooling coil which incorporates an enthalpy heat exchanger has been modelled for tropical climate. Under test conditions, results have shown that latent effectiveness and the moisture resistance coefficient have strong dependency on the inlet air humidity ratio. Moreover, the latent effectiveness has been found to be strongly dependent on the moisture resistance coefficient rather than the convective mass transfer coefficient. Finally, annual energy analysis for Singapore weather conditions have also shown that energy recovered under variable inlet air conditions is 15% less than that recovered under constant inlet air conditions for the same heat exchanger.  相似文献   

6.
When circulated air passes through the cooling coil in an air-conditioning system, the air is over-cooled to eliminate the moisture and decrease the temperature. The cooled air is then reheated to recover the temperature. The purpose of the present study was to evaluate the performance of a cooling/reheating system with regard to both cooling and reheating energy savings affected by exchanging heat between the cooled air and the reheated air with a compact heat exchanger. The thermal and dehumidification behaviors of the system were evaluated experimentally and then compared with simulation data. The results show that the energy saving rate was as high as 50% under the present experimental conditions and was affected by the face velocity of the heat exchanger, the inlet temperature, the inlet humidity ratio, and the effectiveness of heat exchanger. Furthermore, the experimental data were found to be in fairly good agreement with the simulation data.  相似文献   

7.
蓄热换热器具有结构简单、造价低、效率高等优点,在余热回收方面有着广阔的应用前景。蓄热体作为蓄热换热器的关键部分,其形状、大小及材质等各项性能参数都会对蓄热系统的余热回收效果产生重要的影响。对环状和蜂窝这两种蓄热体的传热与阻力特性进行了试验研究,通过对试验结果分析,得出了热空气进口温度和速度对蓄热体冷热空气出口温度、传热速率、温度效率、热效率及阻力损失的影响规律,并从温度效率、热效率和阻力损失几方面比较了两蓄热体的传热与阻力性能,发现在低进口速度时环状蓄热体的综合性能更好。  相似文献   

8.
干湿工况下波纹翅片管换热器空气侧特性的对比   总被引:2,自引:1,他引:1  
对7个带亲水层和3个不带亲水层波纹翅片管换热器在析湿工况下空气侧的换热压降特性进行了试验研究,在不同的入口风速和入口相对湿度下比较了干湿工况下的空气侧特性。结果表明,对带亲水层的波纹翅片,析湿工况下的压降显著地高于干工况下的;当入口风速小于0.5 m/s时,湿工况下的换热性能低于干工况下的,当入口风速增加到2.0 m/s时,湿工况下的换热性能则强于干工况下的。析湿工况下带亲水层波纹翅片的换热性能比不带亲水层波纹翅片的偏低一些,但是表面涂上亲水层可以大大降低空气侧的压降。提出析湿工况下波纹翅片管换热器空气侧的换热和压降关联式,平均误差分别为8.70%和7.90%,可用于设计波纹翅片管换热器或者评价它的性能。  相似文献   

9.
对两种不同型号微型风扇出口速度进行了测量,并对这两种型号风扇出口速度分布进行了比较。在此基础上,对散热器散热量进行了计算,得到了散热器出口的空气温度分布,并比较了采用两种微型风扇时散热器的散热量,以及相同空气流量、不同空气入口速度分布条件下散热器的散热量。计算结果表明,在相同空气流量条件下,均匀的速度分布有助于提高散热器的散热量。  相似文献   

10.
Among tubular heat exchangers, fin-tube types are the most widely used in refrigeration and air-conditioning equipment. Efforts to enhance the performance of these heat exchangers included variations in the fin shape from a plain fin to a slit and louver type. In the context of heat transfer augmentation, the performance of vortex generators has also been investigated. Delta winglet vortex generators have recently attracted research interest, partly due to experimental data showing that their addition to fin-tube heat exchangers considerably reduces pressure loss at heat transfer capacity of nearly the same level. The efficiency of the delta winglet vortex generators widely varies depending on their size and shape, as well as the locations where they are implemented. In this paper, the flow field around delta winglet vortex generators in a common flow up arrangement was analyzed in terms of flow characteristics and heat transfer using computational fluid dynamics methods. Flow mixing due to vortices and delayed separation due to acceleration influence the overall fin performance. The fin with delta winglet vortex generators exhibited a pressure loss lower than that of a plain fin, and the heat transfer performance was enhanced at high air velocity or Reynolds number.  相似文献   

11.
Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared.  相似文献   

12.
提出了一种空气/水复合热源热泵型空调器,冬夏使用中在采用空气作为热源同时可以回收利用家庭废水的低品位热能。运用热力学原理研究了夏季在不同新风比、不同室内温度时机组制冷系数随冷凝水回收后温度变化而变化情况;分析了机组冬季制热回收废水缓解室外换热器结霜的机理,研究了采用R22和R407C工质时回气温度和蒸发压力随回收废水量和出水温度的变化。结果表明,采用空气/水作为热泵型空调器的复合热源,能够提高机组夏季制冷循环的制冷系数,冬季制热时有利于延缓室外换热器结霜、改善冬季制热性能。  相似文献   

13.
在空调箱中表冷器的性能不仅受到工况参数的影响,而且也随结构参数的改变而变化。本文建立了表冷器仿真的集中参数模型,并分别对相同工况下,不同结构的表冷器的性能进行了仿真分析,通过全冷量和水侧阻力的对比,引入收益系数的概念。收益系数综合考虑了全冷量和水侧阻力,为表冷器的结构优化提供了依据。  相似文献   

14.
分析了喷气增焓系统、改进的翅片管以及喷液旁通对空气源热泵热工性能的影响,并进行额定制冷、制热、融霜以及低温制热的实验研究。实验结果表明:喷液增焓能够改善低温制热时的热工性能,制热量能够提高5%~15%;翅片管的改进能够延长结霜时间,缩短融霜时间;制冷时的喷液能够有效降低压缩机吸排气温度,对制冷量和功率的影响极小。3种技术的使用,改善了机组在恶劣工况下的热工性能。  相似文献   

15.
用CFD软件FLUENT对散热器常用的平翅片和波纹翅片表面的流体流动及换热过程进行了数值模拟,获得了翅片表面的流场、温度场、压力场以及换热量、换热系数的变化规律。模拟结果表明在相同气流量的条件下,波纹翅片的压力损失比平翅片的大,平均表面换热系数及换热量均比平翅片的高,翅片的形状结构对流场分布和强化换热效果的影响较大。  相似文献   

16.
高湿地区风冷热泵蒸发器除霜控制研究   总被引:2,自引:0,他引:2  
对高湿地区风冷热泵蒸发器结霜过程进行了理论分析及实验测试。研究表明,在高湿地区,霜层的形成及霜厚的增加较快,以蒸发温度及空气压降作为除霜控制参数是合理选择化霜周期的重要依据。  相似文献   

17.

In the authors’ previous work, an embossed plate heat exchanger was proposed to the adsorption bed and results showed that the plate heat exchanger adsorption chiller had a lower Coefficient of performance (COP) but higher Specific cooling power (SCP) than those of a fin-tube type adsorption chiller, which shows high potential to resolve one of the most serious disadvantages of the adsorption cooling system, i.e., system size. However, only one section of the repeating embossed pitch plate was used and a uniform inlet flow condition was applied, which might have caused a distortion in estimated performance. We have reassessed the embossed plate heat exchanger adsorption bed by including the end effect to examine the real benefit of the proposed heat exchanger. The result showed that SCP was not significantly changed, while a 66.4 % increase in COP was observed. The proposed embossed plate heat exchanger adsorption bed is expected to provide advantages in both COP and SCP compared to a fin-tube type adsorption bed.

  相似文献   

18.
An experimental study was conducted to investigate the effects of air-side fouling and cleaning on the performances of various condenser coils used in unitary air-conditioning systems. A total of six condenser coils with different fin geometry and row number were tested. Performance tests were performed at three different conditions: clean-as-received, after fouling, and after cleaning. In all cases, it was observed that the fouling was mostly confined to the frontal face of the heat exchanger as reported in the previous investigations. The amount of deposited dust was more dependent on fin geometry for the single-row heat exchangers than for the double-row heat exchangers. The predominant effect of fouling was to cause a more significant increase in air-side pressure drop than a degradation in heat transfer performance. For the single-row heat exchangers, the pressure drop increased by 28 to 31%, while the heat transfer performance decreased by 7 to 12% at the standard air face velocity of 1.53 m/s depending on fin shape. For the double-row heat exchangers, the pressure drop increased by 22 to 37%, and heat transfer performance decreased by only 4-5% at the same air face velocity. Once the contaminated coils were cleaned according to the given cleaning procedure the original performance of the heat exchangers could almost be recovered completely. The pressure drop could be restored within 1 to 7% and the heat transfer performance could be recovered to within 1 to 5% of the originally clean heat exchangers. Therefore, it is concluded that a periodic application of the specified cleaning technique will be effective in maintaining the thermal performance of the condenser coils.  相似文献   

19.
Direct contact air conditioning systems, in which heat and mass are transferred directly between air and water droplets, have many advantages over conventional indirect contact systems. The purpose of this research is to investigate the cooling and heating performances of direct contact air conditioning system for various inlet parameters such as air velocity, air temperature, water flow rate and water temperature. The experimental apparatus comprises a wind tunnel, water spray system, scrubber, demister, heater, refrigerator, flow and temperature controller, and data acquisition system. The inlet and outlet conditions of air and water are measured when the air contacts directly with water droplets as a counter flow in the spray section of the wind tunnel, and the heat and mass transfer rates between air and water are calculated. The droplet size of the water sprays is also measured using a Malvern Particle Analyzer. In the cooling conditions, the outlet air temperature and humidity ratio decrease as the water flow rate increases and as the water temperature, air velocity and temperature decrease. On the contrary, the outlet air temperature and humidity ratio increase in the heating conditions as the water flow rate and temperature increase and as the air velocity decreases.  相似文献   

20.
提出了一种圆管倾角渐增波纹翅片的管翅式换热器,利用FLUENT软件对其空气侧的流体流动和换热过程进行了数值模拟,得到了翅片通道中心面上的温度场和压力场的分布情况及平均传热系数、努赛尔数与速度的关系。并将其强化传热效果与倾角均匀波纹翅片换热器进行对比分析,结果表明倾角渐增波纹翅片比倾角均匀波纹翅片的传热效果更好,更节能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号