首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
利用水热法制备了α-MoO_3纳米棒传感器材料,进而制备了α-MoO_3纳米棒粉末的平面型气体传感器,并基于CGS-1TP智能气体检测分析系统研究了其对H_2S气体的气敏特性。结果表明:制备的α-MoO_3材料结构呈现棒状形态,平均长度和宽度分别约为300 nm和100 nm。制备的α-MoO_3纳米棒传感器对体积分数为20×10~(-6)的H_2S进行气体响应测试的最佳操作温度为180℃,对应的气体响应值为14.92,响应和恢复时间分别为7 s和11 s,同时对体积分数为10×10~(-6)~100×10~(-6)的H2S表现出较高的线性度和优异的稳定性。  相似文献   

2.
以La(NO3)3×6H2O,Fe(NO3)3×9H2O和Co(NO3)2×6H2O为原料,采用柠檬酸盐法合成LaCo0.2Fe0.8O3纳米晶,用DTA,TGA对原粉形成纳米晶过程进行分析,用XRD,SEM对纳米晶进行表征,并对其湿敏特性进行研究。结果表明,在600℃下焙烧使原粉形成了稳定的钙钛矿纳米晶。此材料在相对湿度大于54%RH时对湿度的变化有较高的灵敏度,掺杂适量无机盐可以改善材料的湿敏特性,使它在全程湿度范围内对湿度都有很好的响应。  相似文献   

3.
不同形貌ZnO纳米材料的合成对高性能气敏传感器的开发具有重要意义。采用微波辅助法合成了ZnO纳米微球和纳米棒,通过X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)和紫外-可见分光光度计(UV-Vis)分别对材料的结构、形貌和光学性能进行表征,研究了两种形貌ZnO纳米材料的气敏性能。结果表明:ZnO纳米微球与ZnO纳米棒相比表现出良好的气敏性能,在370℃下对体积分数为100×10-6的三乙胺灵敏度高达110.4,响应和恢复时间分别为18 s和2 s,检测限低至0.1×10-6,在长期的循环测试中ZnO纳米微球传感器可以保持较高的响应值、良好的稳定性和重复性。  相似文献   

4.
金属氧化物半导体酒敏材料研究现状   总被引:1,自引:0,他引:1  
概述了SnO_2、ZnO、Fe_2O_3和复合金属氧化物酒敏材料的研究现状,阐述了掺杂、材料粒径纳米化对酒敏性能的影响。介绍了In_2O_3酒敏材料的新进展:采用微乳液的方法制备出粗径8 nm的In_2O_3纳米材料,掺入少量的Pt、La_2O_3制得功耗低(<150 mW)、灵敏度高、选择性和稳定性好的乙醇气体传感器,响应时间7 s,恢复时间30 s;并对酒敏机理进行了浅析。  相似文献   

5.
在预处理衬底上采用物理气相输运法制备了长度100μm以上的CoPc微纳米线,并采用滴注法构筑了基于CoPc微纳米线的电阻式湿度传感器.研究了传感器的湿敏特性及其响应机理.结果显示基于CoPc微纳米线的电阻式湿度传感器具有良好的重复稳定性、低检测下限(33%RH)和快速响应-恢复时间(分别为5 s和2 s).研究表明有机...  相似文献   

6.
采用共沉淀法制备SnO2-LiZnVO4系湿敏材料,研究了LiZnVO4的掺杂量对材料湿敏电容的影响。结果表明:LiZnVO4的掺杂量,环境的相对湿度(RH)、测试信号频率对湿敏电容有较大影响。当x(LiZnVO4)为10%时,可使材料具有合适的低湿电容和灵敏度。在100Hz下,当环境的RH从33%上升到93%时,SnO2-LiZnVO4系湿敏材料制备的湿敏元件的电容增量可达起始值的2300%,显示出较高的电容湿度敏感性。湿敏元件的电容响应时间约为54s,恢复时间约为60s。湿滞约为RH6%。  相似文献   

7.
《微纳电子技术》2019,(2):111-118
首先采用水热法制备了四种不同Sn掺杂量的一维Zn1-xSnxO纳米结构材料,然后通过介电泳纳米操控技术将制备的四种纳米结构排布到预先设计的Ti/Au电极之间,进而构建四种湿度传感器,并进行传感特性测试。通过对四种传感结构的测试结果分析发现,采用原子数分数为3%的Sn掺杂ZnO纳米材料构建的传感器具有较好的传感特性,相对湿度在11.3%~97.3%内其最大灵敏度为7 397%,响应与恢复时间均为2 s。结合湿度多层吸附理论深入研究掺杂对湿度传感特性的影响。结果表明,通过Sn掺杂对纳米结构中载流子浓度以及晶格应变的调控,可以有效改善材料的电导与表面特性,提升Zn1-xSnxO纳米湿度传感器的灵敏度、响应与恢复时间和迟滞等传感特性。  相似文献   

8.
以SnCl_4·5H_2O与柠檬酸为原料,采用sol-gel法制备了掺杂质量分数w(Yb_2O_3)为0~1.0%的Yb_2O_3-SnO_2纳米粉体。利用XRD、TEM等测试手段分析了粉体的微观结构,采用静态配气法测试了由所制粉体制成的气敏元件对NO_2、Cl_2、H_2、H_2S、乙醇、甲醛等气体的气敏性能。结果表明:用该法得到的粉体颗粒粒径小,且均匀;工作温度为100℃时,由掺杂w(Yb_2O_3)为0.4%的SnO_2粉体,在烧结温度600℃制得的气敏元件,对体积分数为30×10–6的NO_2的灵敏度最高可达18224,且该元件具有较好的响应–恢复特性,响应时间和恢复时间分别是20s和15s。  相似文献   

9.
目前,温湿度测量仪器中使用的湿度传感器大多是半导体陶瓷湿敏电阻器,如ZnCr_3O_4、MgCr_2O_4—TiO_2等。这类湿敏器件的缺陷是:第一,怕污染,需要经常对传感器做定时加热清洗的净化处理工作;第二,其精度受气侯环境(温度和湿度)影响较大,通常要进行二维修正才能获得较准确的数值;第三,价格高,寿命  相似文献   

10.
通过气喷工艺在石英晶体微天平(QCM)上制备了基于还原氧化石墨烯(RGO)与聚氧化乙烯(PEO)两种材料的复合湿敏薄膜,对环境湿度进行检测。所得纯PEO薄膜及RGO-PEO复合薄膜的表面形貌以及化学特性分别通过扫描电子显微镜(SEM)以及紫外-可见光谱进行表征。与基于纯PEO薄膜的湿度传感器相比,基于RGO-PEO复合湿敏薄膜的湿度传感器的动态响应大大提高,其灵敏度从16.3Hz/%RH提升到34.7Hz/%RH。此外,基于复合薄膜的湿度传感器拥有更快的响应/恢复时间,达到传感器吸附/脱附时总频移的63.2%所用时间分别为3s和4 s,而纯PEO薄膜为10 s和12 s;湿滞为1.21%RH,且有较好的长期稳定性。这项研究揭示了基于RGO-PEO复合薄膜的QCM湿度传感器在常温下检测环境湿度的发展潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号