共查询到19条相似文献,搜索用时 62 毫秒
1.
基于人工神经网络混合油品粘度预测模型研究 总被引:1,自引:1,他引:0
在分析前向BP神经网络基本原理的基础上,对3种混油建立了人工神经网络混油粘度预测模型,该模型结构为1-7-1的三层BP网络模型。运用实测数据对BP网络进行训练和仿真。结果表明,三种模型预测误差全在2.5%以内,比前苏联学者提出的混油粘度计算公式——克恩达尔-莫恩罗埃公式和兹达诺夫斯基公式更具有计算精度高、适用性强的特点,可完全满足工程实际需要。 相似文献
2.
本文介绍了一种使油—水—表面活性剂乳状液破乳的方法。能够用来处理表面活性剂驱提高采收率工程中采出的乳状液。使其经济有效地分离成两相:一相是可回注的盐水/表面活性剂相;另一相是达到管售质量的原油。 相似文献
3.
4.
在油气水的三相管内流动中,分层流同样也是一种常见流型。由于互不相溶的油水两相之间相互作用及分散程度的复杂性,所以油气水三相分层流比一般的气液两相分层流要复杂许多。使用一维三流体模型求解含有油水乳状液的分层流、即气体/(W/O型)乳状液/(W/O/W型)多重乳状液的三相分层流。通过模型的求解可以确定油气水分层流的相分率及其他相关参数和压降。 相似文献
5.
6.
油包水乳状液中胶质和沥青质的界面剪切黏度和乳状液稳定性的关系 总被引:1,自引:0,他引:1
采用红外和紫外光谱分析了胜利原油中胶质和沥青质的结构,采用界面剪切黏度对其油、水界面膜强度进行了表征,测定了胶质和沥青质模拟油油包水乳状液的稳定性。结果表明,沥青质和胶质的结构和相对分子质量不同,沥青质含有更多的芳环结构,相对分子质量比胶质大,界面膜强度也比胶质强,其乳状液更稳定。 相似文献
7.
采用剪切界面粘度仪考察了表面活性剂Tween40和Span80的油-水界面粘度及其对大庆、伊朗轻质和伊朗重质减压渣油馏分的油-水界面粘度的影响。结果表明,随着油相中Tween40、Span80和油相中芳烃质量分数的增加,油-水界面粘度均增大。并且,当油相中Tween40、Span80的临界胶束(CMC)质量分数在其质量分数变化范围内时,油-水界面粘度有大幅度的增加。Tween40铺展吸附于油-水界面,其油-水界面粘度较大。Span80竖立吸附于油-水界面,其油-水界面粘度较小。Tween40取代减渣馏分铺展吸附于油-水界面,其油-水界面粘度较低,相互间的差别也较小,随着油相中Tween40质量分数的增大,油-水界面粘度降低。Span80楔人减渣馏分油-水界面吸附层,共同构成油-水界面结构。对线性结构多的减渣馏分,随着油相中Span80质量分数的增大,油-水界面粘度逐渐增大。对芳香稠环结构多的减渣馏分,随着油相中Span80质量分数的增大,油-水界面粘度逐渐减小。 相似文献
8.
油,水二相流固耦合渗流的数学模型 总被引:11,自引:1,他引:11
为了正确模拟油藏中流体流动的动态过程,必须考虑由于注水和开采而引起的多相流体的流动、应力状态的变化和储集层变形之间复杂的相互作用。但由于这种问题的控制方程是三维非线性耦合方程,因此,很难模拟这种耦合作用。利用广义的Biot理论建立了一个完全耦合的数学模型,它描述可变形油藏中岩石变形和油水流动的这种相互作用。模型中假设岩石骨架具有弹塑性特性,流体是可压缩的。以岩石骨架位移和油水压力为未知变量所建立的控制方程,包括岩石骨架的平衡方程和流体(油、水)的连续性方程。所建立的流固耦合模型在石油工程,特别是在油藏数值模拟中有广泛的应用。参8(陈志宏摘 相似文献
9.
采用剪切界面粘度仪考察了表面活性剂Tween40和Span80的油 水界面粘度及其对大庆、伊朗轻质和伊朗重质减压渣油馏分的油 水界面粘度的影响。结果表明,随着油相中Tween40、Span80和油相中芳烃质量分数的增加,油 水界面粘度均增大。并且,当油相中Tween40、Span80的临界胶束(CMC)质量分数在其质量分数变化范围内时,油 水界面粘度有大幅度的增加。Tween40铺展吸附于油 水界面,其油 水界面粘度较大。Span80竖立吸附于油 水界面,其油 水界面粘度较小。Tween40取代减渣馏分铺展吸附于油 水界面,其油 水界面粘度较低,相互间的差别也较小,随着油相中Tween40质量分数的增大,油 水界面粘度降低。Span80楔入减渣馏分油 水界面吸附层,共同构成油 水界面结构。对线性结构多的减渣馏分,随着油相中Span80质量分数的增大,油 水界面粘度逐渐增大。对芳香稠环结构多的减渣馏分,随着油相中Span80质量分数的增大,油 水界面粘度逐渐减小。 相似文献
10.
11.
12.
R. Abedini M. Esfandyari A. Nezhadmoghadam B. Rahmanian 《Petroleum Science and Technology》2013,31(19):2008-2021
Abstract Viscosity is one of the most important governing parameters of the fluid flow, either in the porous media or in pipelines. So it is important to use an accurate method to calculate the oil viscosity at various operating conditions. In the literature, several empirical correlations have been proposed for predicting undersaturated crude oil viscosity. However these correlations are not able to predict the oil viscosity adequately for a wide range of conditions. An extensive experimental data of undersaturated oil viscosities from different samples of Iranian oil reservoirs was applied to develop an Artificial Neural Network (ANN) model and fuzzy model to predict and calculate the undersaturated oil viscosity. Validity and accuracy of these models has been confirmed by comparing the obtained results of these correlations and with experimental data for Iranian oil samples. It was observed that there is acceptable agreement between the ANN model and fuzzy model results with experimental data. 相似文献
13.
14.
G. R. Pazuki M. Nikookar M. Dehnavi B. Al-Anazi 《Petroleum Science and Technology》2013,31(20):2108-2113
Abstract The authors studied the efficiency and accuracy of neural network model for prediction of permeability as a key parameter in reservoir characterization. So, some multilayer perceptron (MLP) neural network models with different learning algorithms of Levenberg-Margnardt, back propagation, improved back propagation (IBP), and quick propagation with three layers and different node numbers (3, 4, 5, 6, 7) in the middle layer have been presented. These models have been obtained by 630 permeability data from one of offshore reservoirs located in Saudi Arabia. The accuracy of models was studied by comparing the obtained results of each model with experimental data. So, the neural network with IBP learning method and five nodes in the middle layer has the most accuracy. 相似文献
15.
高含硫气田地面集输系统广泛使用L360钢,由于腐蚀因素的多样性及协同效应,其腐蚀速率预测一直是个难题。文章介绍了不同腐蚀因素对L360钢腐蚀速率的影响。随着H2S和CO2压力的增高,腐蚀速率先降后升,在H2S和CO2压力为1.00和0.67 MPa时达到最小值;随Cl-质量浓度的升高,腐蚀速率增大,但当Cl-质量浓度高于40 g/L后,腐蚀速率反而降低;随着温度的升高,腐蚀速率增大,当温度超过70℃后,腐蚀速率反而降低。建立了三层结构BP神经网络模型,输入层有6个神经元,分别代表H2S,CO2分压、Cl-质量浓度、温度、流速和沉积硫6种腐蚀影响因素,隐层神经元数目为8个,输出层神经元数目为1个,代表腐蚀速率。结果表明,L360钢在试验水中的平均腐蚀速率的预测最大误差在15.9%以内,可以满足工程应用要求。 相似文献
16.
17.
Abstract Predicting crude oil viscosity is a challenge faced by reservoir engineers in production planning. Some early researchers have propounded some theories based on crude oil properties and have encountered various problems leading to errors in forecasted values. This article discusses work carried out with a model using an artificial neural network (ANN) for predicting crude oil viscosity of Nigerian crude oil. The model was started through adoption of a classical regression technique empirical method for dead oil viscosity as a function of American Institute for Petroleum (API) and reduced temperature. The Peng–Robinson equation of state and other thermodynamic properties are introduced, coupled with the Standing model for calculating bubble point pressure (Pb). The developed model was evaluated using existing measured real-life data collected from 10 oil fields within the Niger Delta region of Nigeria. Both the predicted and measured viscosities were plotted against each corresponding reservoir pressure to establish the model's level of reliability. The superimposition of the pressure-viscosity relationship shows that at each point, the viscosity model captures the physical behavior of viscosity variations with pressure. In each case, the ANN does not require a data relationship to predict the crude oil viscosity but rather relies on the field data obtained for training. For this reason, it is recommended that the ANN approach should be applied in oil fields for reduction in error, computational time, and cost of overproduction and underproduction. 相似文献
18.
19.
应用神经网络识别地层特性 总被引:4,自引:0,他引:4
引入了一种改进的BP算法,用于由测井资料识别地层特性。主要讨论了地层岩性和含流体性质的识别问题,并指出了提高该方法实用效果的专业性措施。通过实际资料的批量处理解释实例,证明运用本方法能加快敛速度和改善预测效果。 相似文献