共查询到20条相似文献,搜索用时 62 毫秒
1.
马晓博 《电力科学与技术学报》2015,(2):92-97
风电功率预测的准确性对风电大规模接入的电力系统安全稳定运行具有重要意义。提出一种基于小波变换和BP神经网络的风电功率预测模型,通过小波变换将风电功率序列在不同频率上进行分解,对分解后的单支序列分别采用相匹配的BP神经网络进行建模和预测,最后,叠加各序列的预测结果得到完整的预测值。基于该模型的内蒙古某风电场输出功率预测算例结果表明:该模型可以有效提高预测精度。 相似文献
2.
3.
4.
目的 为了减小风电功率并入国家电网时产生的频率波动,提高风电功率预测精度,方法提出一种结合变分模态分解(VMD)、改进灰狼算法(LILGWO)和最小二乘支持向量机(LSSVM)的风电功率短期预测方法。首先通过VMD方法将风电功率序列分解重构成3个复杂程度性不同的模态分量,降低风电功率的波动性;其次使用LSSVM挖掘各分量的特征信息,对各分量分别进行预测,针对LSSVM模型中重要参数的选取对预测精度影响较大问题,引入LILGWO对参数进行寻优;最后将各分量预测结果叠加重构,得到最终预测风电功率。结果以宁夏回族自治区某地区风电站实际数据为例,对未来三天分别进行预测取平均值,本文方法的预测平均绝对误差(mean absolute error,MAE)为2.706 8 kW,均方根误差(root mean square error,RMSE)为2.021 1,拟合程度决定系数(R-Square,R2)为0.976 9,与对比方法3~6相比,RMSE分别降低了40.93%,25.21%,14.7%,6.24%;MAE分别降低了42.34%,28.04%,16.97%,7.77%;R2分别提升了4... 相似文献
5.
为了增强在短期风电功率预测领域中传统数据驱动机器学习模型的精度,提出基于ikPCA-FABAS-KELM的短期风电功率预测模型.首先,对主成分分析进行改进,提出可逆核主成分分析(ikPCA),在保证数据特征的同时,降低输入数据的复杂度,以提升模型运行速度;其次,引入萤火虫个体吸引策略对天牛须算法(BAS)进行改进,提出FABAS算法;最后,利用FABAS算法对核极限学习机(KELM)的正则化参数C和核参数γ进行寻优,降低人为因素对模型盲目训练的影响,提高模型预测精度.仿真结果显示,提出的预测模型有效提高了传统模型的预测精度. 相似文献
6.
为提高风电功率的预测精度, 提出基于数据分解和输入变量选择的短期风电功率预测方法。利用自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)对原始风电功率和风速数据进行分解, 平缓数据波动以提取内部隐藏信息。通过排列熵算法(permutation entropy, PE)将风电功率分量简化重构以降低模型复杂度。为提升输入变量与风电功率之间的关联程度, 剔除冗杂信息, 降低输入数据维度, 结合Pearson相关系数(Pearson correlation coefficient, PCC)和灰色关联分析(grey relation analysis, GRA)对各风电重构功率分量的输入变量进行选择。最后利用基于注意力的时序卷积网络(attention-based temporal convolutional network, ATCN)对各重构功率分量进行预测, 将各预测值叠加得到最终结果。试验结果表明, 基于CEEMDAN-GRA-PCC-ATCN的短期风电功率预测方法能够提取更多风电数据内部的关键信息, 降低输入数据的维度, 强化输入变量与风电功率之间的关联性, 有效提高预测精度。 相似文献
7.
随着大规模的风电并网,风电所具有的间歇性与随机性对电力系统的稳定性产生了很大的影响,风电功率预测成为当前解决该问题重要的方式之一.本文利用长短期记忆(LSTM)网络良好的时序记忆特性,将小波分解技术与LSTM深度网络结合,提出基于小波长短期记忆网络的风电功率超短期概率预测模型.首先通过小波分解技术将原始时间序列进行平稳化处理,再建立各子序列样本的LSTM网络预测模型,借助最大似然估计法估计预测误差的高斯分布函数,最终实现对未来4 h时刻的风电功率概率区间预测.最后,采用中国东北某风电场数据对所提方法进行算例分析,结果表明,将小波分解与深度学习方法结合可以较好地提高预测的精度,提高概率预测的区间可靠性. 相似文献
8.
喻晓 《重庆理工大学学报(自然科学版)》2012,(9)
采用模糊神经网络建立了风电场输出功率的短期预测模型,通过新疆某风电场数据进行算例验证,对不同预测周期的模型的预测效果进行比较。结果表明,所建立的模糊神经网络模型能正确地预测风电场输出功率,提升传统神经网络的性能。 相似文献
9.
风电功率的精准预测是提高风电并网稳定性的重要手段之一。针对气象特征复杂性与随机性引起风电功率难以精准预测的问题,提出了一种基于VMD-CNN-LSTM的短期风电功率预测模型。该模型总体结构包括多气象特征序列变分模态分解(VMD)与重构、卷积神经网络(CNN)挖掘多气象特征信息、长短期记忆网络(LSTM)预测结果输出、泛化能力分析。与目前仅考虑分解历史风电功率序列分别建立预测模型方法相比,本文所提出的VMD方法物理意义明确,能够跟踪气象特征预测未来风电功率趋势。在某风电场的实际数据上进行验证,算例结果表明:该模型预测结果精度较高,降低了多气象特征因素对预测结果的影响,具有一定的实用性。 相似文献
10.
由于风电出力具有随机性、波动性的特点,风电功率预测技术的研究对电力系统的安全稳定运行具有重要意义。提出一种基于PCC-GRU-Attention组合风电功率超短期预测方法,首先使用皮尔逊相关系数(pearson correlation coefficient, PCC)对数据预处理,选出高度相关性的特征作为输入,针对长短期记忆(long short term memory, LSTM)网络与门控循环单元(gated recurrent unite, GRU)网络处理长时序列易丢失序列信息的问题,通过GRU网络处理时间序列信息以及注意力(Attention)机制优化输出权重,与单一LSTM网络和GRU网络以及其它组合模型相比,有效提高了预测精度。 相似文献
11.
结合我国风电发展的基本情况,分析总结了国内外风力发电功率预测的现状及方法。由于BP神经网络能以任意精度逼近任意非线性映射并且泛化能力强,所以运用BP神经网络法来进行功率预测,建立内蒙某风电场提供的数值天气预报数据与发电功率的映射模型。利用MATLAB进行仿真,验证设计预测模型的实际可行性,并且预测精度满足相关要求。最后运用VB简单设计开发了一个风电功率预测系统。 相似文献
12.
讨论如何利用人工神经网络进行电力系统短期负荷预测。研究结果表明:基于BP神经网络的短期电力负荷预测具有精度高的特点,符合预测结果的相对误差小于3.06%。 相似文献
13.
14.
风电功率的准确预测是减少风电并网对电网造成冲击的有效手段之一。利用深度学习算法中的长短期记忆网络(LSTM)对中期风电功率出力进行了预测,综合考虑功率数据、气象数据等多维特征,采用LSTM算法和随机森林(RF)算法搭建预测模型,预测风电场1~7日的风电功率出力。基于某风电场2014年1月到2016年12月的实际发电数据,通过实验对比BP神经网络、支持向量机(SVM)和自回归积分滑动平均模型(ARIMA)等算法可知,提出的预测方法在较为突变的天气状况下仍能保持较高的预测精度,能为风电并网和电网调度提供辅助支撑。 相似文献
15.
提出了自适应BP神经网络模型预测短期负荷的方法。依据负荷的日相关性把历史负荷分成24组样本数据,再用BP网络来映射样本数据。采用初始化样本数据,增大节点作用函数陡度,变换隐层节点作用函数形式,自适应调整学习参数等方法提高了BP网络的学习速度,得到了较为满意的预报结果. 相似文献
16.
提出了一种基于小波系数和BP神经网络相结合的电力系统短期负荷预测新方法。把过去直接对负荷序列的预测替代为对小波系数的预测,并对小波细节系数作分层软阈值处理。详细介绍了小波系数结合BP神经网络进行预测的新方法,并给出算例验证。 相似文献
17.
采用神经网络进行电力系统短期负荷预测的一种降维方法 总被引:2,自引:0,他引:2
提出一种采用神经网络进行电力系统短期负荷预测的降维方法。该方法将每天的L个时刻负荷数据降维处理为少数几个持征参数,利用人工神经网络预测待测日的这些参数,以及参照日负荷为依据进行负荷预测。该方法提高了预测精度和速度,预测实例表明该方法的有效性。 相似文献
18.
《沈阳工程学院学报(自然科学版)》2015,(3)
为了降低风速序列的非平稳性,研究了基于db N小波变换及单位置NWP的超短期风功率预测模型。采用小波多分辨率分析法对原始风速时间序列进行分解,滤除高频分量,滤出低频分量,低频分量能够对风功率预测起到决定作用。然后,利用线性校正数学模型对超短期风速时间序列进行预测,并采用巴特沃兹低通滤波器对校正后的风速进行滤波。实验结果证明,该方法可有效地提高超短期风功率的预测精度。 相似文献
19.
介绍了国内外风速预测的主要方法及其基本原理,并分析了各自特点,通过比较各算例的精度,找出了影响预测结果的因素,并指出了改进预测方法的发展方向. 相似文献
20.
用于风电功率预测的RPCL优化神经网络模型 总被引:1,自引:0,他引:1
为了提高风电功率预测的准确度,提出了一种基于对手竞争惩罚学习算法( rival penalized competitive learning,RPCL)优化径向基函数( radial basis function,RBF)神经网络的风电功率预测模型。首先通过RPCL确定网络隐含层神经元数目以及中心点初始值,然后由K均值聚类法确定隐含层神经元的中心点和宽度,最后通过最小均值算法确定隐含层神经元与输出层神经元之间的权值。仿真结果表明:此优化模型相较于传统RBF网络具有更高的准确性。 相似文献