首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
超声电沉积制备纳米铜粉末的机理研究   总被引:9,自引:0,他引:9  
利用超声电沉积法制备金属纳米铜粉,平均粒径30nm,分散性较好;利用XRD、TEM等进行了成分、粒度、形貌及结构分析,对影响纳米粉末制备的主要工艺因素进行分析和优化。试验表明,电流密度对纳米粉末形成起控制作用,表面活性剂和超声场对粉末分散更为重要。  相似文献   

2.
以纯Fe和Ga金属为原料,采用气雾化法制备粒径为10~150μm的Fe-Ga磁致伸缩合金粉末,通过超音速火焰喷涂技术沉积Fe-Ga合金涂层.采用SEM、XRD、纳米压痕仪、拉伸试验机和磁致伸缩测试仪表征粉末和涂层的形貌、组织结构和性能.研究结果表明,气雾化粉末具有单一的α-Fe相,粉末球形度高.选择粒径为30~60μm...  相似文献   

3.
目的 探究利用真空气雾化法制备AlSi10Mg球形粉末过程中各参数对粉末质量的影响,以得到最佳的制粉工艺参数。以制备的粉末进行增材制造,研究块体组织及其力学性能。方法 针对制备的球形粉末,采用扫描电镜(SEM)观察粉末的球形度及其内部组织。通过分析球形粉末的平均粒径与粒度分布区间总结最优制粉参数。针对以球形粉末增材制造出的沉积态样品,采用X射线衍射仪(XRD)、扫描电镜(SEM)研究其微观组织形貌并通过拉伸试验研究其力学性能。结果 真空气雾化法制备出的粉末表面光洁且球形度良好,同时粉末平均粒径随雾化压力的增大呈现先减小后增大的趋势并在4.0 MPa时粒径最小,且与环孔喷嘴相比,环缝喷嘴制备出的粉末粒径更小。粉末内部组织由胞状晶与树枝晶构成。通过SLM制备的沉积态样品组织以沿沉积方向的枝晶为主,该样品的力学性能较优异,断裂方式主要为沿晶断裂。结论 在使用真空气雾化法制备增材制造用球形粉末时,应选择4.0 MPa的气雾化压力并选择环缝喷嘴,方能得到质量最佳的球形粉末。  相似文献   

4.
对用燃烧还原合成法制备氮化钛粉末的过程进行了试验研究 ,建立了一种无需机械粉磨处理的直接合成工艺。制备的氮化钛粉末粒径分布为 0 .2~ 1.0 μm ,平均粒径为 0 .5~ 0 .6 μm。研究结果表明 ,副产物氧化镁的机械分割作用是使氮化钛颗粒免于烧结成块的根本原因 ,恰当地控制合成温度可较好地兼顾产物的氮化率与颗粒形态  相似文献   

5.
碳化钛涂层是一种重要的功能性涂层,因具有良好的性能而被广泛应用于刀具、模具等行业.电泳沉积(EPD)制备涂层设备简单、成本低、成膜快、厚度均匀,并且在较大范围内可控.为此,将电泳沉积法与烧结法结合,在YT15硬质合金制品上制备出均匀的TiC涂层,研究了碳化钛粉末在悬浮介质中的荷电机理,考察了碳化钛粉末在有机悬浮液中的分散性和分散稳定性,对涂层结构进行了表征,并探讨了电泳沉积过程中的一些因素对涂层的影响.  相似文献   

6.
张乾  崔作林 《功能材料》2008,39(1):151-153
通过化学气相沉积法高重复性制备了纳米螺旋碳纤维和直线性碳纤维,并研究了金属铜纳米粒子催化剂的尺寸大小对碳纤维形貌的影响,认为粒径较大的铜纳米粒子容易催化聚合生成直线形碳纤维;反之,粒径较小的铜纳米粒子倾向于合成纳米螺旋碳纤维.利用场发射扫描电镜(FESEM)、透射电镜(TEM)和X射线粉末衍射(XRD)等测试方法对产物进行了表征.  相似文献   

7.
采用Stober溶胶-凝胶法制备出二氧化硅纳米颗粒,用十八烷基三氯硅烷(OTC)进行表面改性,利用SEM、FT-IR对改性纳米粒子进行表征,并对玻璃表面新鲜汗垢手印进行显现。结果表明,合成的双亲性二氧化硅纳米粒子双亲性能良好、形态均一、稳定性较好。此纳米材料显现手印效果显著,具有选择性强、背景干扰小等特点。  相似文献   

8.
魏明炜  陈岁元  郭快快  梁京  刘常升 《材料导报》2017,31(12):64-67, 78
采用电极感应熔炼气雾化(EIGA)法制备了激光3D打印用TA15钛合金粉末,研究了熔炼功率对粉末收得率、粒径分布、粉末形貌、松装密度和流动性等特征的影响。结果表明,随着感应熔炼功率增大,粉末收得率和平均粒径减小,当熔炼功率为65kW时,粉末收得率超过62%,中值粒径D_(50)小于100μm,松装密度为2.731g/cm3,流动性为22.46s/50g。对粒径50~180μm的粉末采用激光3D打印,激光直接沉积成形的TA15钛合金样品表面无宏观裂纹和气孔等缺陷,金相组织为细晶网篮组织,制备的TA15钛合金粉末具有良好的可打印性。  相似文献   

9.
纳米复合碳化钨-钴粉末的分散与粒度表征   总被引:1,自引:0,他引:1  
为研究纳米复合碳化钨-钴粉末的分散稳定性和粒度表征方法,以一定量分散介质和分散剂作用于纳米复合碳化钨-钴粉末,利用氮吸附法(BET)、光子相关光谱法(PCS)和电位分析仪分别测试了粉末的比表面积、粒度及其分布和粉末的ξ电位.研究结果表明:高比重的纳米复合碳化钨-钴粉末经一定工艺处理后具有相当的分散稳定性,但长时间球磨对分散并非有利;用BET可表征一次粒径,而PCS则表征二次粒径。  相似文献   

10.
为研究不同溶胶前躯体体系对制备纳米ZnO粉体粒径大小的影响,采用溶胶-凝胶法分别研究了硬脂酸体系、草酸体系、高分子网络体系制备纳米ZnO粉体,并利用TG-DTA、XRD、TEM对其结构、形貌和粒径进行了表征.在3种体系中,高分子网络体系所得粉体粒径最小,粒径在30~40nm,粒径大小均匀,团聚较少.硬脂酸体系得到ZnO粉末粒径较小,范围分布在30~50nm,分散性较好.草酸体系制得ZnO粉末粒径相对较大,在40~60nm,有轻微团聚.  相似文献   

11.
Surface chemistry plays a pivotal role in regulating the morphology of nanoparticles, maintaining colloidal stability, and mediating the interaction with target analytes toward practical applications such as surface‐enhanced Raman scattering (SERS)‐based sensing and imaging. The use of a binary ligand mixture composed of 1,4‐benzenedithiol (BDT) and hexadecyltrimethylammonium chloride (CTAC) to provide gold nanostars with long‐term stability is reported. This is despite BDT being a bifunctional ligand, which usually leads to bridging and loss of colloidal stability. It is found however that neither BDT nor CTAC alone are able to provide sufficient colloidal and chemical stability. BDT‐coated Au nanostars are additionally used as seeds to direct the encapsulation with a gold outer shell, leading to the formation of unusual nanostructures including semishell‐coated gold nanostars, which are characterized by high‐resolution electron microscopy and electron tomography. Finally, BDT is exploited as a probe to reveal the enhanced local electric fields in the different nanostructures, showing that the semishell configuration provides significantly high SERS signals as compared to other core–shell configurations obtained during seeded growth, including full shells.  相似文献   

12.
As an effort to develop a new, effective, nontoxic X-ray contrast agent, the concentrated colloids of silica-encapsulated gold nanoparticles (Au@SiO2 NPs) were fabricated and their colloidal stability, cytotoxicity, and X-ray absorption were investigated. The concentrated colloidal NPs were manufactured by forming a 4 nm-thick silica shell on the surface of each Au NP with 15 nm diameter, followed by enrichment to [Au] = 100 mM. They were very stable in water: the NPs were well separated each other without forming agglomerates and their optical property was very similar to that before enrichment. The colloidal stability of the NPs in biological environment was strongly dependent on their previous morphology in water. The NPs with minor shell damage were stable in phosphate buffered saline (PBS) solution: both in water and in PBS solution, they showed very similar morphology and optical property. However, the NPs with profound shell damage formed big agglomerates in PBS solution, resulting in the red-shift and broadening of the Au surface plasmon resonance peak. Cell viability and proliferation assessments revealed the biocompatibility of the Au@SiO2 NPs: no apparent cytotoxicity was observed even at 100 ppm NPs. The concentrated colloidal NPs showed very strong X-ray absorption. Their relative X-ray transmittance to water was comparable to that of a commercial agent. Considering these, the concentrated colloids of the Au@SiO2 NPs are suitable for an X-ray contrast agent.  相似文献   

13.
谢婷婷  林滉  林秀 《福建分析测试》2021,30(2):40-44,55
以小麦、玉米为原料,采用胶体金快速定量法检测其T-2/H-2毒素含量并探讨胶体金快速定量法的适用性,同时,采用高效液相色谱-串联质谱联用法(LC-MS/MS)验证该方法的准确性.结果 表明,小麦、玉米中T-2/H-2毒素胶体金快速定量法检出限分别为4.3 μg/kg和2.9 μg/kg,定量限分别为10.9μg/kg和...  相似文献   

14.
We investigate the ability of gold nanoparticles of different size, shape, and organization to control the growing process of ZnO semiconductor nanoparticles onto solid substrates through the successive chemical solution deposition (SCSD) method. Flower-like assemblies of ZnO nanostructures were grown successfully on periodic arrays of triangular gold nanoparticles fabricated by nanosphere lithography and randomly deposited colloidal gold nanospheres. Their morphology, crystallinity, phase purity, and vibrational properties were correlated with the metallic features of the substrates.  相似文献   

15.
Jin Y  Kang X  Song Y  Zhang B  Cheng G  Dong S 《Analytical chemistry》2001,73(13):2843-2849
The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.  相似文献   

16.
A natural lithography technique is employed to create an irregular, submonolayer colloidal topography. Epitenon cells were cultured on these colloidal surfaces, and cell morphology investigations using scanning electron microscopy were conducted. Preliminary experiments brought into question the stability of the colloidal nanotopography, and it was unsure if the surface was presented to cells as a static structure. Investigations using secondary electron and backscattered electron imaging, and also X-ray microanalysis, indicated that the colloidal structure was in fact stable, and cells were capable of direct interactions at the peripheral membrane with the colloids.  相似文献   

17.
The stability of N-[(morpholine)methylene]-daunorubicin hydrochloride (MMD) was investigated in the pH range 0.44-13.54, at 313, 308, 303 and 298 K. The degradation of MMD as a result of hydrolysis is a pseudo-first-order reaction described by the following equation: ln c = ln c(0) - k(obs)? t. In the solutions of hydrochloric acid, sodium hydroxide, borate, acetate and phosphate buffers, k(obs) = k(pH) because general acid-base catalysis was not observed. Specific acid-base catalysis of MMD comprises the following reactions: hydrolysis of the protonated molecules of MMD catalyzed by hydrogen ions (k(1)) and spontaneous hydrolysis of MMD molecules other than the protonated ones (k(2)) under the influence of water. The total rate of the reaction is equal to the sum of partial reactions: k(pH) = k(1) ? a(H)+ ? f(1) + k(2) ? f(2) where: k(1) is the second-order rate constant (mol(-1) l s(-1)) of the specific hydrogen ion-catalyzed degradation of the protonated molecules of MMD; k(2) is the pseudo-first-order rate constant (s(-1)) of the water-catalyzed degradation of MMD molecules other than the protonated ones, f(1) - f(2) are fractions of the compound. MMD is the most stable at approx. pH 2.5.  相似文献   

18.
采用柠檬酸钠还原氯金酸制备纳米金,利用X射线荧光能谱和透射电子显微镜对产品进行了表征,通过纳米金溶胶及溶胶中含有的柠檬酸钠和保护剂PVP对Hela细胞、CHO细胞的MTT试验,研究了纳米金溶胶及纳米金颗粒对细胞的毒性,结果表明,纳米金溶胶和纳米金颗粒对这两种细胞均没有产生毒性。将纳米金加入到化妆品基础配方中制备得到了稳定的乳状液,为纳米金用于高级化妆品可行性提供部分实验依据。  相似文献   

19.
Self-organization of colloidal metal nanoparticles into micro- and nanostructured assemblies is currently of tremendous interest promising to find new size- and structure-dependent physical properties. Owing to its unique recognition capabilities and physicochemical stability, DNA can be used as a molecular linker for gold nanoparticles and is a promising construction material for their precise spatial positioning. Due to the enormous specificity of nucleic acid hybridization, the site-specific immobilization of DNA-functionalized gold colloids (1–40 nm) to solid supports, previously functionalized with a complementary DNA array, allows the fabrication of novel nanostructured surface architectures. Scanning force microscopy (SFM), used to characterize the intermediate steps of the DNA-directed immobilization (DDI) on a gold substrate, provides initial insight into the specificity and efficiency of this technique.  相似文献   

20.
A method is described for assembling gold nanorods, end-to-end, into long chains attached on top of a mixed self-assembled monolayer that has been functionalized with streptavidin. Methods to prepare chains of nanorods in colloidal suspension have been reported by others, but our protocol offers a way to directly form such structures on a substrate. The rods are spaced approximately 5 nm apart in the resulting chains, which extend for over a micrometer in length. The assembly and morphology of the nanorod structures were characterized by surface plasmon resonance spectroscopy, as well as by scanning electron microscopy and scanning probe microscopy. Structures of this type could conceivably serve as plasmonic waveguides in future nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号