首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-quality (211)B CdTe buffer layers are required during Hg1−x Cd x Te heteroepitaxy on Si substrates. In this study, direct metalorganic vapor-phase epitaxy (MOVPE) of (211)B CdTe on Si, as well as CdTe on Si using intermediate Ge and ZnTe layers, has been achieved. Tertiary butyl arsine was used as a precursor to enable As surfactant action during CdTe MOVPE on Si. The grown CdTe/Si films display a best x-ray diffraction rocking-curve full-width at half-maximum of 64 arc-s and a best Everson etch pit density of 3 × 105 cm−2. These values are the best reported for MOVPE-grown (211)B CdTe/Si and match state-of-the-art material grown using molecular-beam epitaxy.  相似文献   

2.
High-quality (211)B CdTe buffer layers on Si substrates are required to enable Hg1–x Cd x Te growth and device fabrication on lattice-mismatched Si substrates. Metalorganic vapor-phase epitaxy (MOVPE) of (211)B CdTe on Si substrates using Ge and ZnTe interlayers has been achieved. Cyclic annealing has been used during growth of thick CdTe layers in order to improve crystal quality. The best (211)B CdTe/Si films grown in this study display a low x-ray diffraction (XRD) rocking-curve full-width at half-maximum (FWHM) of 85 arcsec and etch pit density (EPD) of 2 × 106 cm−2. These values are the best reported for MOVPE-grown (211) CdTe/Si and are comparable to those for state-of-the-art molecular beam epitaxy (MBE)-grown CdTe/Si.  相似文献   

3.
A recessed gate AlGaN/GaN high-electron mobility transistor (HEMT) on sapphire (0 0 0 1), a GaN metal-semiconductor field-effect transistor (MESFET) and an InGaN multiple-quantum well green light-emitting diode (LED) on Si (1 1 1) substrates have been grown by metalorganic chemical vapor deposition. The AlGaN/GaN intermediate layers have been used for the growth of GaN MESFET and LED on Si substrates. A two-dimensional electron gas mobility as high as 9260 cm2/V s with a sheet carrier density of 4.8×1012 cm−2 was measured at 4.6 K for the AlGaN/GaN heterostructure on the sapphire substrate. The recessed gate device on sapphire showed a maximum extrinsic transconductance of 146 mS/mm and a drain–source current of 900 mA/mm for the AlGaN/GaN HEMT with a gate length of 2.1 μm at 25°C. The GaN MESFET on Si showed a maximum extrinsic transconductance of 25 mS/mm and a drain–source current of 169 mA/mm with a complete pinch-off for the 2.5-μm-gate length. The LED on Si exhibited an operating voltage of 18 V, a series resistance of 300 Ω, an optical output power of 10 μW and a peak emission wavelength of 505 nm with a full-width at half-maximum of 33 nm at 20 mA drive current.  相似文献   

4.
采用条形Al掩模在Si(111)衬底上进行了GaN薄膜侧向外延的研究.结果显示,当掩模条垂直于Si衬底[11-2]方向,也即GaN[10-10]方向时,GaN无法通过侧向生长合并得到表面平整的薄膜;当掩模条平行于Si衬底[11-2]方向,也即GaN[10-10]方向时,GaN侧向外延速度较快,有利于合并得到平整的薄膜.同时,研究表明,升高温度和降低生长气压都有利于侧向生长.通过优化生长工艺,在条形Al掩模Si(111)衬底上得到了连续完整的GaN薄膜.原子力显微镜测试显示,窗口区域生长的GaN薄膜位错密度约为1×109/cm2,而侧向生长的GaN薄膜位错密度降低到了5×107/cm2以下.  相似文献   

5.
A systematic study is performed to optimize aluminum nitride (AlN) epilayers grown on (0001) sapphire by metal-organic vapor-phase epitaxy. Specifically, the impact of the AlN nucleation conditions on the crystalline quality and surface morphology of AlN epilayers is studied. Atomic force microscopy (AFM) and x-ray diffraction (XRD) results reveal that the nucleation layer plays a critical role in the growth of subsequent layers. The magnitude of the TMAl flow of AlN nucleation layer is found to have a strong effect on the crystalline quality and surface morphology of the high-temperature (HT) AlN epilayer. A simple Al adatom-diffusion-enhancement model is presented to explain the strong dependence of the crystalline quality and surface morphology on TMAl flow. Furthermore, ammonia flow, nucleation temperature, and growth time of the AlN nucleation layer are found to affect the surface morphology and the crystalline quality as well. A trade-off is found between surface morphology and crystalline quality; that is, we do not obtain the best surface morphology and the highest crystalline quality for the same growth parameters. For optimized AlN nucleation layers and HT AlN epilayers, a clear and continuously linear step-flow pattern with saw-tooth shaped terrace edges is found by AFM on AlN epilayers. Triple-axis x-ray rocking curves show a full-width at half-maximum (FWHM) of 11.5 arcsec and 14.5 arcsec for the (002) and (004) reflection, respectively. KOH etching reveals an etch-pit density (EPD) of 2 × 107 cm−2, as deduced from AFM measurements.  相似文献   

6.
Annealing conditions of CdTe layers grown on Si substrates by metalorganic vapor-phase epitaxy were studied. Typically, 3-μm-thick n-type (211) CdTe layers were annealed for 60 s in flowing hydrogen at atmospheric pressure by covering their surfaces with bulk CdTe wafers. At annealing temperatures above 700°C, improvement of crystal quality was confirmed from full-width at half-maximum values of double-crystal rocking-curve measurements and x-ray diffraction measurements. Photoluminescence measurements revealed no deterioration of electrical properties in the annealed n-CdTe layers. Furthermore, annealing at 900°C improved the performance of radiation detectors with structure of p-like CdTe/n-CdTe/n +-Si substrate.  相似文献   

7.
In situ wafer curvature measurements were used in combination with postgrowth structural characterization to study the evolution of film stress and microstructure in GaN layers grown by metalorganic chemical vapor deposition on N+ ion-implanted AlN/Si (111) substrates. The results were compared with growth on identical unimplanted substrates. In situ stress measurements revealed that, for the unimplanted sample, the GaN initiated growth under compressive stress of −1.41 GPa which arose due to lattice mismatch with the AlN buffer layer. In contrast, GaN growth on the ion-implanted sample began at lower compressive stress of −0.84 GPa, suggesting a reduction in epitaxial stress. In both cases, the compressive growth stress was fully relaxed after ~0.7 μm and minimal tensile stress was generated during growth. During post-growth cooling, tensile stress was introduced in the GaN layer of both samples due to thermal expansion mismatch. Post-growth optical microscopy characterization, however, demonstrated that the ion-implanted sample had lower density of channeling cracks compared with the unimplanted sample. Cross-sectional transmission electron microscopy images of the sample grown on ion-implanted Si with no post-implantation nitrogen annealing revealed the formation of horizontal cracks in the implanted region beneath the AlN buffer layer. The weakened layer acts to decouple the GaN film from the Si substrate and thereby reduces the density of channeling cracks in the film after growth.  相似文献   

8.
200 keV Si implantations were performed in the dose range of 5 × 1012 − 1 × 1014 cm−2 in GaAs grown on Si. For comparison implants were also performed in GaAs layers grown on GaAs substrates. Implanted layers were annealed by both furnace and halogen lamp rapid thermal anneals. Significantly lower donor activations were observed in GaAs layers grown on Si substrates than in the layers grown on GaAs substrates. Extremely low dopant activations were obtained for Be implants in GaAs grown on Si. Photoluminescence and photoreflectance measurements were also performed on the implanted material.  相似文献   

9.
ZnO thin films were grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy (MBE). The crystalline properties of the layers as measured by x-ray diffraction were found to improve with lower growth temperatures, where the full-width at half-maximum (FWHM) of the x-ray rocking curves was shown to be in the range of 100 to 1,100 arcsec. The electronic properties were found to improve for higher growth temperatures, with n-type carrier concentration and electron mobility in the range of 1×1017 −5×1018 cm−3 and 80–36 cm2/Vs, respectively. Photoluminescence (PL) measurements indicated that growth at higher temperatures provided superior band edge radiative emission, while growth at lower temperatures resulted in significant deep level radiative emission centered at 2.35 eV. Photoconductive decay measurements exhibit a slow decay indicating the presence of hole traps, where Zn vacancies are believed to be the source of both the slow decay and the deep level emission observed in PL spectra.  相似文献   

10.
Direct growth of high-quality, thick CdTe (211) epilayers, with thickness up to 100 μm, on Si (211) substrates in a vertical metalorganic vapor phase epitaxy system is reported. In order to obtain homo-orientation growth on Si substrates, pretreatment of the substrates was carried out in a separate chamber by annealing them together with pieces of GaAs at 800–900°C in a hydrogen environment. Grown epilayers had very good substrate adhesion. The full-width at half-maximum (FWHM) value of the x-ray double-crystal rocking curve from the CdTe (422) reflection decreased rapidly with increasing layer thickness and remained between 140–200 arcsec for layers >18 μm. Photoluminescence measurement at 4.2 K showed high-intensity, bound excitonic emission and very small defect-related deep emissions, indicating the high crystalline quality of the grown layers. Furthermore, a CdTe/n+-Si heterojunction diode was fabricated that exhibited clear rectifying behavior.  相似文献   

11.
Aluminum nitride (AlN) thin films with c-axis preferred orientation have been prepared by reactive direct-current (DC) magnetron sputtering. The degree of preferred crystal orientation, the cross-sectional structure, and the surface morphology of AlN thin films grown on Si (100) substrates at various substrate temperatures from 60°C to 520°C have been investigated by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Results show that the substrate temperature has a significant effect on the structural properties, such as the degree of c-axis preferred orientation, the full-width at half-maximum (FWHM) of the rocking curve, the surface morphology, and the cross-sectional structure as well as the deposition rate of the AlN thin films. The optimal substrate temperature is 430°C, with corresponding root-mean-square surface roughness (R rms) of 1.97?nm, FWHM of AlN (002) diffraction of 2.259°, and deposition rate of 20.86?nm/min. The mechanisms behind these phenomena are discussed. Finally, film bulk acoustic resonators based on AlN films were fabricated; the corresponding typical electromechanical coupling coefficient (k t 2 ) is 5.1% with series and parallel frequencies of 2.37?GHz and 2.42?GHz, respectively.  相似文献   

12.
Epitaxial layers of AlN and GaN were grown by gas source molecular-beam epitaxy on a composite substrate consisting of a thin (250 nm) layer of silicon (111) bonded to a polycrystalline SiC substrate. Two dimensional growth modes of AlN and GaN were observed. We show that the plastic deformation of the thin Si layer results in initial relaxation of the AlN buffer layer and thus eliminates cracking of the epitaxial layer of GaN. Raman, x-ray diffraction, and cathodoluminescence measurements confirm the wurtzite structure of the GaN epilayer and the c-axis crystal growth orientation. The average stress in the GaN layer is estimated at 320 MPa. This is a factor of two less than the stress reported for HVPE growth on 6H-SiC (0001).  相似文献   

13.
The deposition of a multilayer buffer layer that includes a high-temperature AlN layer grown at a temperature above 1100°C has made it possible to reduce the dislocation density in a GaN layer by 1.5?C2 orders of magnitude to values in the range from 9 × 108 to 1 × 109 cm?2, compared with the case of growth on a thin low-temperature AlN nucleation layer. The decrease in the dislocation density causes a substantial increase in the electron mobility in the GaN layers to 600?C650 cm2 V?1 s?1, which is in agreement with the results of calculations and is indicative of the high crystalline perfection of the layers.  相似文献   

14.
Growth of GaN boules by hydride vapor-phase epitaxy (HVPE) is very attractive for fabrication of GaN substrates. Use of dichlorosilane as a source for Si doping of bulk GaN is investigated. It is shown that no tensile strain is incorporated into mm-thick, Si-doped GaN layers on sapphire substrates if the threading dislocation density is previously reduced to 2.5 × 107 cm?2 or below. High-quality GaN layers with electron densities up to 1.5 × 1019 cm?3 have been achieved, and an upper limit of about 4 × 1019 cm?3 for Si doping of GaN boules was deduced considering the evolution of dislocations with thickness. A 2-inch, Si-doped GaN crystal with length exceeding 6 mm and targeted Si doping of about 1 × 1018 cm?3 is demonstrated.  相似文献   

15.
AlGaN/GaN high electron mobility transistor (HEMT) hetero-structures were grown on the 2-in Si (1 1 1) substrate using metal-organic chemical vapor deposition (MOCVD). Low-temperature (LT) AlN layers were inserted to relieve the tension stress during the growth of GaN epilayers. The grown AlGaN/GaN HEMT samples exhibited a maximum crack-free area of 8 mm×5 mm, XRD GaN (0 0 0 2) full-width at half-maximum (FWHM) of 661 arcsec and surface roughness of 0.377 nm. The device with a gate length of 1.4 μm and a gate width of 60 μm demonstrated maximum drain current density of 304 mA/mm, transconductance of 124 mS/mm and reverse gate leakage current of 0.76 μA/mm at the gate voltage of −10 V.  相似文献   

16.
We have investigated near-infrared absorption and photocurrent in lattice-matched AlInN/GaN and strained AlGaN/GaN heterostructures grown by molecular-beam epitaxy (MBE) on low-defect GaN substrates for infrared device applications. The AlGaN/GaN heterostructures were grown under Ga-rich conditions at 745°C. Material characterization via atomic force microscopy and high-resolution x-ray diffraction indicates that the AlGaN/GaN heterostructures have smooth and well-defined interfaces. A minimum full-width at half-maximum of 92 meV was obtained for the width of the intersubband absorption peak at 675 meV of a 13.7 Å GaN/27.5 Å Al0.47Ga0.53N superlattice. The variation of the intersubband absorption energy across a 1 cm × 1 cm wafer was ±1%. An AlGaN/GaN-based electromodulated absorption device and a quantum well infrared detector were also fabricated. Using electromodulated absorption spectroscopy, the full-width at half-maximum of the absorption peak was reduced by 33% compared with the direct absorption measurement. This demonstrates the suitability of the electromodulated absorption technique for determining the intrinsic width of intersubband transitions. The detector displayed a peak responsivity of 195 μA/W at 614 meV (2.02 μm) without bias. Optimal MBE growth conditions for lattice-matched AlInN on low-defect GaN substrates were also studied as a function of total metal flux and growth temperature. A maximum growth rate of 3.8 nm/min was achieved while maintaining a high level of material quality. Intersubband absorption in AlInN/GaN superlattices was observed at 430 meV with full-width at half-maximum of 142 meV. Theoretical calculations of the intersubband absorption energies were found to be in agreement with the experimental results for both AlGaN/GaN and AlInN/GaN heterostructures.  相似文献   

17.
The GaN films are grown by pulsed laser deposition (PLD) on sapphire, AlN(30 nm)/Al2O3 and AlN(150 nm)/Al2O3, respectively. The effect of AlN buffer layer thickness on the properties of GaN films grown by PLD is investigated systematically. The characterizations reveal that as AlN buffer layer thickness increases, the surface root-mean-square (RMS) roughness of GaN film decreases from 11.5 nm to 2.3 nm, while the FWHM value of GaN film rises up from 20.28 arcmin to 84.6 arcmin and then drops to 31.8 arcmin. These results are different from the GaN films deposited by metal organic chemical vapor deposition (MOCVD) with AlN buffer layers, which shows the improvement of crystalline qualities and surface morphologies with the thickening of AlN buffer layer. The mechanism of the effect of AlN buffer layer on the growth of GaN films by PLD is hence proposed.  相似文献   

18.
The present work describes the novel, relatively simple, and efficient technique of pulsed laser deposition for rapid prototyping of thin films and multi-layer heterostructures of wide band gap semiconductors and related materials. In this method, a KrF pulsed excimer laser is used for ablation of polycrystalline, stoichiometric targets of wide band gap materials. Upon laser absorption by the target surface, a strong plasm a plume is produced which then condenses onto the substrate, kept at a suitable distance from the target surface. We have optimized the processing parameters such as laser fluence, substrate temperature, background gas pressure, target to substrate distance, and pulse repetition rate for the growth of high quality crstalline thin films and heterostructures. The films have been characterized by x-ray diffraction, Rutherford backscattering and ion channeling spectrometry, high resolution transmission electron microscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy, cathodoluminescence, and electrical transport measurements. We show that high quality AlN and GaN thin films can be grown by pulsed laser deposition at relatively lower substrate temperatures (750–800°C) than those employed in metal organic chemical vapor deposition (MOCVD), (1000–1100°C), an alternative growth method. The pulsed laser deposited GaN films (∼0.5 μm thick), grown on AlN buffered sapphire (0001), shows an x-ray diffraction rocking curve full width at half maximum (FWHM) of 5–7 arc-min. The ion channeling minimum yield in the surface region for AlN and GaN is ∼3%, indicating a high degree of crystallinity. The optical band gap for AlN and GaN is found to be 6.2 and 3.4 eV, respectively. These epitaxial films are shiny, and the surface root mean square roughness is ∼5–15 nm. The electrical resistivity of the GaN films is in the range of 10−2–102 Θ-cm with a mobility in excess of 80 cm2V−1s−1 and a carrier concentration of 1017–1019 cm−3, depending upon the buffer layers and growth conditions. We have also demonstrated the application of the pulsed laser deposition technique for integration of technologically important materials with the III–V nitrides. The examples include pulsed laser deposition of ZnO/GaN heterostructures for UV-blue lasers and epitaxial growth of TiN on GaN and SiC for low resistance ohmic contact metallization. Employing the pulsed laser, we also demonstrate a dry etching process for GaN and AlN films.  相似文献   

19.
We studied the microstructural characteristics and electrical properties of epitaxial Ge films grown on Si(001) substrates by x-ray diffraction, atomic force microscopy, and transmission electron microscopy. The films were grown using a two-step technique by reduced-pressure chemical vapor deposition, where the first step promotes two-dimensional growth at a lower substrate temperature. We observed a decrease in defect density with increasing film thickness. Ge films with thickness of 3.5 μm exhibited threading dislocation densities of 5 × 106 cm?2, which yielded devices with dark current density of 5 mA cm?2 (1 V reverse bias). We also noted the presence of stacking faults in the form of lines in the films and establish that this is an important defect for Ge films grown by this deposition technique.  相似文献   

20.
采用在AlN缓冲层后原位沉积SiN掩膜层,然后横向外延生长GaN薄膜.通过该法在硅衬底上获得了1.7 μm无裂纹的GaN薄膜,并在此基础上外延生长出了GaN基发光二极管(LED)外延片,其外延片的总厚度约为1.9 μm.采用高分辨率双晶X-射线衍射(DCXRD)、原子力显微镜(AFM)测试分析.结果表明,GaN薄膜(0002)面的半峰全宽(FWHM)降低到403 arcsec,其表面平整度得到了很大的改善;InGaN/GaN多量子阱的界面较平整,结晶质量良好.光致发光谱表明,GaN基LED峰值波长为469.2 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号