首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 800 毫秒
1.
Alan Grint  Harry Marsh 《Fuel》1981,60(12):1115-1120
Laboratory investigations of strength of cokes from blends of coals incorporating pitch were supported by 7 kg trials. The stronger cokes showed a greater interaction between coal and pitch to produce an interface component of anisotropic mozaics which is relatively resistant to crack propagation. The process whereby coal is transformed into coke includes the formation of a fluid zone in which develop nematic liquid crystals and anisotropic carbon which is an essential component of metallurgical coke. Strength, thermal and oxidation resistance of coke can be discussed in terms of the size and shape of the anisotropic carbon which constitutes the optical texture of pore-wall material of coke. Coals of different rank form cokes with different optical textures. Blending procedures of non-caking, caking and coking coals involve the interactions of components of the blend to form mesophase and optical texture. Petroleum pitches used as additives are effective in modifying the carbonization process because of an ability to participate in hydrogen transfer reactions.  相似文献   

2.
This study examines further the phenomena of the modification of coal carbonizations by organic additives. Anthracene, pyrene and chrysene modify the carbonization in a closed system of coking coals as observed from increases in the size of optical textures of resultant cokes. Weakly caking coals are unaffected. Chrysene is the most efficient modifier probably because of its lowest calculated free valence. The co-additives tetralin and hydrogenated anthracene oil further enhance the modification processes so obviating the necessity to use hydrogenated additives. Co-carbonizations of oxidized coking and caking coals with decacyclene are effective in removing the effects of mild oxidation. Increased rates of carbonization enhance the sizes of optical textures of resultant cokes.  相似文献   

3.
Zhanfen Qian  Harry Marsh 《Fuel》1984,63(11):1588-1593
Coals of rank (NCB) 701, 401 and 204 were oxidized in air at 371 K for up to 15 days. The changes in optical texture of cokes from these coals were monitored by optical microscopy and point counting. The oxidized coals were cocarbonized to 1273 K with up to 30% of A240 petroleum pitch, a hydrogenated coal extract and decacyclene, and the resultant cokes were reassessed. The increase in isotropy in cokes caused by the oxidation treatment was never completely removed by use of the additives, but significant improvements existed for the less extensively oxidized coals. The possibility exists of using co-carbonization of oxidized coals with additives in coke making. Additives with good hydrogen donor ability, as with the coal extract, appear to be the most suitable.  相似文献   

4.
Studies on the influence of an additive derived from coal on the coking properties of lower-rank coals and on the structure of cokes obtained from blends have been undertaken in our laboratory since 1978. The two coal extracts from flame coal (Int. Class. 900) and gas-coking coal (Int. Class. 632) were used as additives. The results indicate that the blends prepared from low-rank coals — flame coal (Int. Class. 900), gas-flame coal (Int. Class. 721) and the extracts possess better coking properties in comparison to the parent coals. The optical texture and the degree of structure ordering of the cokes obtained from blends is related to the amount of extract in the blend. With increasing extract content in the blend, increases were observed in the amount of optically anisotropic areas in cokes from low-rank coal/extract blends and the crystallite height (Lc) of cokes from the blends. The isotropic optical texture of cokes from low-rank coals can be modified by coal extracts to an anisotropic optical texture. The non-fusible coal is the most difficult to modify. An explanation of the observed phenomena is given.  相似文献   

5.
Optical microscopy is widely used in the characterization of coals and cokes. This Paper shows that the laser Raman microprobe (MOLE) which combines an optical microscope and a Raman spectrometer can provide useful additional information. Three main areas were investigated: identification of minerals in coal and coke; structural characterization of coals and cokes; and the interaction of inorganic additives and coal. Where possible, the results were compared with conventional optical microscopy measurements whereby it was shown that the optical texture and Raman spectra of cokes are not closely related. The Raman spectra of high temperature cokes were used to estimate the size of microcrystalline regions.  相似文献   

6.
This paper discusses the processes of coal liquefaction and co-carbonization of coal/pitch blends in terms of physical and chemical properties of the fluid phases found in both pyrolysis systems. Mechanisms of development of thermal plasticity in coals are outlined. In coal liqudfaction the importance is stressed of hydrogen-donor vehicles interacting with the products of thermal depolymerization of coal. The concept of variations in the facility of solvation and solvolysis of additives in co-carbonizations can explain the variations observed in degrees of interaction of a single coal with several additives. Possibly, the hydrogen-donor facility of an additive may be as important in assessments of modifying ability as an average molecular structure. The possibility exists of using an analysis of optical texture of cokes resulting from the fluid coal/solvent pyrolysis systems to characterize the effectiveness of solvents in coal liquefaction systems as distinct from coal blending co-carbonization studies.  相似文献   

7.
Isao Mochida  Harry Marsh  Alan Grint 《Fuel》1979,58(9):633-641
Several coals of different rank have been carbonized singly and also co-carbonized with acenaphthylene and decacyclene. The resultant cokes were mounted in resin and polished surfaces were examined for optical texture using a polarized-light optical microscope fitted with a half-wave retarder plate. The optical texture can be assessed qualitatively (visually) or quantitatively by a point-counting technique in terms of size and shape of constituent isochromatic anisotropic units. Some cokes from coals were Isotropic. Acenaphthylene was only able to exert a smaller influence than decacyclene on the optical texture of the resultant cokes from co-carbonizations. Decacyclene was able to modify the optical texture for both the low-rank non-fusible and the caking coals. The effects of changing the proportions of coal to additive were examined. Results are interpreted in terms of ‘depolymerization’ of the coal by the action of the additive (as solvent) and also by the action of the additive in modifying the processes of formation of semi-coke via nematic liquid crystals.  相似文献   

8.
Studies on the influence of anthracene coal extracts on the carbonization process of medium- and high-rank coals were undertaken. Extracts from flame coal (Int. Class. 900) and gas-coking coal (Int. Class. 632) were used as additives. The blends prepared from the examined coals and the extracts exhibited better coking properties than the parent coals. The addition of extract to the coals gave an increase in the microstrength of the resultant cokes. The effects of co-carbonization of coking coals with extracts were increases in the size of the optical texture as well as in the degree of structural ordering of cokes. In the co-carbonization of semicoking coal with addition of coal extracts, a reduction in the size of the anisotropic units and a decrease in the crystallite height of cokes were observed. No modification of the basic anisotropy of coke from anthracite by coal extract was observed. With increasing extract content in anthracite/extract blends there was an increase in the degree of structural ordering of co-carbonization products. Extract addition was unable to modify the behaviour of fusinite. Based on the results of investigation of the influence of coal extracts on the carbonization of different-rank coals, a division of coals according to the modification of the optical texture of coke is given.  相似文献   

9.
The coking process of vitrites and thermobitumens separated from vitrites was examined; structural X-ray and microscopic examinations of the cokes obtained were carried out. A correlation between reflectance distribution of vitrites and microscopic structure of their cokes was found.An increase in the structural ordering of the cokes from vitrites, passing from cokes of gas coal to cokes of orthocoking coals, is observed. It is accompanied by an increase of the optical anisotropy of the resultant cokes; this anisotropy first appears in coke from gas-coaking coal.The cokes from the thermobitumens are lower ordered than the cokes from parent vitrites but all these cokes are partially or entirely optically anisotropic.Total removal of the thermobitumens from coals deprives the cokes from the residues after the extraction of any optical anisotropy.  相似文献   

10.
Isao Mochida  Harry Marsh 《Fuel》1979,58(11):809-814
Five coals, of rank from an anthracite to a non-caking coal, have been carbonized singly and also cocarbonized with decacyclene, mixing ratio 7:3, in the temperature range 648 K to 823 K, heating at 10 K min?1, with various soak times. The objective of the study is to derive the basic factors which influence the kinetics of formation of mesophase and anisotropic coke. Accordingly, resultant cokes were polished and surfaces examined by reflected polarized light in an optical microscope. The size, shape and extent of anisotropic development is discussed in terms of the conditions of carbonization and the rank of coal. In these systems a somewhat larger optical texture results in cokes produced at the higher carbonization temperatures. The temperature of onset of growth of anisotropic carbon in co-carbonizations was below that of either the coal or the decacyclene. Reactivities are evidently modified. The origins, growth and coalescence of growth units of anisotropic carbon in these cocarbonizations of coals with decacyclene are demonstrated.  相似文献   

11.
Cortonwood Silkstone (NCB class 401) and Betteshanger (NCB class 301 a/204) coals were co-carbonized with solid additives such as anthracite, coke breeze, green and calcined petroleum cokes. The resultant carbonization products (cokes) were examined by optical microscopy and SEM was used to investigate polished surfaces etched by chromic acid and fracture surfaces. For both coals only the anthracite and green petroleum coke become bonded to the coal cokes. This probably results from softening and interaction of interfaces of the anthracite and green coke with the fluid coal via a mechanism of hydrogenating solvolysis during the carbonization process. The coke breeze and calcined petroleum cokes were interlocked into the matrix of coal coke.  相似文献   

12.
Isao Mochida  Harry Marsh 《Fuel》1979,58(11):790-796
Coals (NCB rank 102 to 902) were co-carbonized with solvent-refined coals and coal extracts, mixing ratio of 7:3, to 873 K, heating at 10 K min?1 with a soak period of 1 h. Resultant cokes were examined in polished section using reflected polarized-light microscopy and optical textures were recorded photographically. These optical textures were compared to assess the ability of the additive pitch to modify both the size and extent of optical texture of resultant cokes. The objective of the study is to provide a fundamental understanding of the use of pitch materials in co-carbonizations of lower-rank coals to make metallurgical coke. A Gulf SRC was able to modify the optical texture of cokes from all coals except the anthracite. Soluble fractions of this Gulf SRC were less effective than the parent SRC. A coal extract (NCB D112) modified coke optical texture, the extent being enhanced as the rank of coal being extracted was increased. Hydrogenation of the coal extract increased the penetration of the pitch into the coal particles but simultaneously reduced the size of the optical texture relative to the non-hydrogenated pitch. This indicates a positive interaction of pitch with coal in the co-carbonization process. The optical texture of the cokes from the hydrogenated coal extract in single carbonizations was larger than that from the non-hydrogenated material. Mechanisms explaining these effects are briefly described.  相似文献   

13.
A range of bituminous coals has been carbonized to 1273 K. Polished surfaces of the solid products, carbons or cokes, are examined for optical texture by optical microscopy. Fracture surfaces of the carbons are examined by scanning electron microscopy (SEM). The carbon from the lowest rank coal (NCB Code No. 702) is isotropic and fracture surfaces are featureless. Carbons from coals of ranks 602, 502 are optically isotropic but fracture surfaces are granular (size 0.1–0.2 μm), indicating small growth units of mesophase. In the carbon/coke from a 401 coal, the anisotropic optical texture and grain size are both ≈0.5–10 μm diameter. Coke from a coking coal (301a, 301b) has a layered structure extending in units of at least 20 μm diameter with sub-structures ~ 1.5 μm within the layers, indicating perhaps that the bedding anisotropy of these coals is not totally lost in the fluid phase of carbonization. The carbons from the higher rank coals have the bedding anisotropy of the parent coal. The combined techniques of optical microscopy and SEM (both before and after etching of the fracture surfaces of coke in chromic acid solution) reveal useful detail of structure in carbons/cokes and of the mechanism of carbonization of coking coals.  相似文献   

14.
Established methods for the determination of phosphorus in coal and coke were compared and found to give results in satisfactory agreement. The method for the determination of phosphorus described in BS 1016, ‘Methods for the analysis and testing of coal and coke’, Part 9, 1977 was used to study the relation between the phosphorus content of coals and their corresponding cokes. The cokes were prepared on laboratory, test oven and industrial scales, by the carbonization of various bituminous coals within the range of volatile matter yield of 16–40 wt%. The determined values of the phosphorus contents of these cokes and their parent coals indicated that the phosphorus present in the coal is completely retained in cokes carbonized to temperatures between 900 and 1050 °C. On the basis of these experimental results it is suggested that the phosphorus content of coke can generally be calculated from a knowledge of the phosphorus content of the coal and the coke yield with an accuracy which is sufficient for normal requirements.  相似文献   

15.
Vitrains from a wide range of ranks of coals were carbonized singly and also co-carbonized (HTT 1273 K) with 25% of Ashland A200 petroleum pitch. Polished surfaces of the resultant cokes were examined for optical texture in a polarizing-light optical microscope using a half-wave retarder plate to produce interference colours. For the anthracites, there is no modification of either component during co-carbonization. The growth of optical texture from the A200 pitch is not affected. For all caking vitrains the optical texture of coke from the blend system is extensively modified when compared to the optical texture of coke from the vitrain. For the low-rank non-caking vitrains the isotropic coke becomes totally or partially anisotropic in co-carbonization. The mechanism of modification of the optical texture of resultant cokes is related to the formation of nematic liquid crystals, mesophase and the semi-coke. It is not considered that the chemistry of pyrolysis is modified on cocarbonization of the vitrain and pitch.  相似文献   

16.
Indigeneous mineral matter in coals acts catalytically towards graphitization during heat treatment of coals to 2273 K. Nineteen coals of a wide range of rank were demineralized by acid extraction. Original and demineralized coals were carbonized in the range 1073–2273 K, and the resulting cokes examined by optical microscopy, X-ray diffraction and phase-contrast high resolution electron microscopy. Optical microscopy indicated the extent of formation of anisotropic carbon in the resultant cokes. The (002) X-ray diffraction profiles indicated three types of catalytic effect, for which electron microscopy demonstrated different crystallite structures and interrelations. The importance of catalytic graphitization in metallurgical cokes in relation to their strength and reactivity is discussed.  相似文献   

17.
Ten coals were carbonized under various pressures (4 kPa, normal pressure and 10 MPa). Optical textures and physical structures of resultant cokes were monitored. The extent of optical anisotropy increased greatly with increasing carbonization pressure, such a trend being more pronounced with the lower-rank coals. Physical structure was also influenced by carbonization pressure. Gasification reactivities of the cokes with carbon dioxide and steam (1200 °C) were studied with respect to their optical anisotropy and physical structure. Gasification reactivities of optical textures were estimated using both the point-counting technique and regression analysis. The reactivities of cokes with the same optical texture produced from the same parent coal were similar. However, there were considerable differences when compared with cokes from different parent coals. Although the values estimated by regression analyses are consistent with those obtained by point-counting, except for the leaflet and inert textures, the physical locations of respective textures can be important in quantitative discussions of their reactivities.  相似文献   

18.
水煤浆气化原料的成浆性研究   总被引:2,自引:1,他引:1  
在实验室条件下研究了从低煤化度烟煤到高煤化度无烟煤,以及石油焦等不同气化原料煤的成浆性.为提高低煤化度烟煤的成浆浓度,在保证其混合原料灰熔融特征温度满足液态排渣前提下,将低煤化度烟煤与一种或两种煤化度较高的煤或者石油焦配比,考察了它们的成浆性.结果表明,煤化度适中的QD煤单独制浆浓度达到70%,黏度536mPa.s,流动性为A;通过不同煤种的级配,三种原料配合的料浆浓度为62%时,黏度在340mPa.s~550mPa.s之间,可以获得符合液态排渣气化要求的混合料水煤浆,扩大了气化原料来源.  相似文献   

19.
Steve Ragan  Harry Marsh 《Fuel》1981,60(6):522-528
This study examines the micro-strength and optical textures of a laboratory coke from a base-blend of Freyming and Pocahontas coal (wt ratio, 1:1) and of cokes from the co-carbonization of the blend, with each of five petroleum pitches in various proportions. Coke pieces, 212–600 μm, from the micro-strength test are assessed in terms of origin and propagation of cracks induced by the test. Always, the addition of pitch to the base-blend improves the strength of the resultant cokes, the pitches behaving differently. A qualitative, subjective appraisal of results indicates that increases in coke strength are associated with relative abilities of pitches to interact with the coals to produce a fluid phase, of solution of coal in pitch, which gives an ‘intermediate’ coke with an optical texture of mozaics. This intermediate coke strengthens the bonding at interfaces. Cracks originate predominantly from the shrinkage cracks in the domains of Pocahontas coke. Mozaic structures tend to resist crack propagation. The coal/pitch system may flow around coal particles so containing incipient crack formation in resultant coke particles.  相似文献   

20.
A coal-extract solution prepared by extraction of a coking coal (CRC 301a) with anthracene oil by the National Coal Board is separated into fractions using solvents of increasing solvent power. These fractions are carbonized to 823 K and the optical textures of resultant cokes are assessed. The objective of the study is to examine the role of the molecular components of the coal-extract solution including the residual anthracene oil in mechanisms of formation of the optical texture of the anisotropic coke. Generally, the low-molecular-weight fractions of the coal-extract solution produce cokes with larger sized optical textures than the coke from the parent coal-extract solution. The higher-molecular-weight fractions produce cokes with smaller sized optical textures. Isotropic coke is produced from material which is not soluble in benzene and tetrahydrofuran. Within this parent-coal-extract solution it would appear that the dominant partner effect is influential over the size of the optical texture of coke from the coal-extraction solution, that is the minor component of smaller molecules controls the necessary growth of liquid crystals. Also, the presence of anthracene oil augments the size of optical texture of resultant cokes by providing the necessary physical fluidity of the system and possibly some chemical stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号