首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the influence of anthracene coal extracts on the carbonization process of medium- and high-rank coals were undertaken. Extracts from flame coal (Int. Class. 900) and gas-coking coal (Int. Class. 632) were used as additives. The blends prepared from the examined coals and the extracts exhibited better coking properties than the parent coals. The addition of extract to the coals gave an increase in the microstrength of the resultant cokes. The effects of co-carbonization of coking coals with extracts were increases in the size of the optical texture as well as in the degree of structural ordering of cokes. In the co-carbonization of semicoking coal with addition of coal extracts, a reduction in the size of the anisotropic units and a decrease in the crystallite height of cokes were observed. No modification of the basic anisotropy of coke from anthracite by coal extract was observed. With increasing extract content in anthracite/extract blends there was an increase in the degree of structural ordering of co-carbonization products. Extract addition was unable to modify the behaviour of fusinite. Based on the results of investigation of the influence of coal extracts on the carbonization of different-rank coals, a division of coals according to the modification of the optical texture of coke is given.  相似文献   

2.
Alan Grint  Harry Marsh 《Fuel》1981,60(12):1115-1120
Laboratory investigations of strength of cokes from blends of coals incorporating pitch were supported by 7 kg trials. The stronger cokes showed a greater interaction between coal and pitch to produce an interface component of anisotropic mozaics which is relatively resistant to crack propagation. The process whereby coal is transformed into coke includes the formation of a fluid zone in which develop nematic liquid crystals and anisotropic carbon which is an essential component of metallurgical coke. Strength, thermal and oxidation resistance of coke can be discussed in terms of the size and shape of the anisotropic carbon which constitutes the optical texture of pore-wall material of coke. Coals of different rank form cokes with different optical textures. Blending procedures of non-caking, caking and coking coals involve the interactions of components of the blend to form mesophase and optical texture. Petroleum pitches used as additives are effective in modifying the carbonization process because of an ability to participate in hydrogen transfer reactions.  相似文献   

3.
A range of bituminous coals has been carbonized to 1273 K. Polished surfaces of the solid products, carbons or cokes, are examined for optical texture by optical microscopy. Fracture surfaces of the carbons are examined by scanning electron microscopy (SEM). The carbon from the lowest rank coal (NCB Code No. 702) is isotropic and fracture surfaces are featureless. Carbons from coals of ranks 602, 502 are optically isotropic but fracture surfaces are granular (size 0.1–0.2 μm), indicating small growth units of mesophase. In the carbon/coke from a 401 coal, the anisotropic optical texture and grain size are both ≈0.5–10 μm diameter. Coke from a coking coal (301a, 301b) has a layered structure extending in units of at least 20 μm diameter with sub-structures ~ 1.5 μm within the layers, indicating perhaps that the bedding anisotropy of these coals is not totally lost in the fluid phase of carbonization. The carbons from the higher rank coals have the bedding anisotropy of the parent coal. The combined techniques of optical microscopy and SEM (both before and after etching of the fracture surfaces of coke in chromic acid solution) reveal useful detail of structure in carbons/cokes and of the mechanism of carbonization of coking coals.  相似文献   

4.
Ten coals were carbonized under various pressures (4 kPa, normal pressure and 10 MPa). Optical textures and physical structures of resultant cokes were monitored. The extent of optical anisotropy increased greatly with increasing carbonization pressure, such a trend being more pronounced with the lower-rank coals. Physical structure was also influenced by carbonization pressure. Gasification reactivities of the cokes with carbon dioxide and steam (1200 °C) were studied with respect to their optical anisotropy and physical structure. Gasification reactivities of optical textures were estimated using both the point-counting technique and regression analysis. The reactivities of cokes with the same optical texture produced from the same parent coal were similar. However, there were considerable differences when compared with cokes from different parent coals. Although the values estimated by regression analyses are consistent with those obtained by point-counting, except for the leaflet and inert textures, the physical locations of respective textures can be important in quantitative discussions of their reactivities.  相似文献   

5.
The coking process of vitrites and thermobitumens separated from vitrites was examined; structural X-ray and microscopic examinations of the cokes obtained were carried out. A correlation between reflectance distribution of vitrites and microscopic structure of their cokes was found.An increase in the structural ordering of the cokes from vitrites, passing from cokes of gas coal to cokes of orthocoking coals, is observed. It is accompanied by an increase of the optical anisotropy of the resultant cokes; this anisotropy first appears in coke from gas-coaking coal.The cokes from the thermobitumens are lower ordered than the cokes from parent vitrites but all these cokes are partially or entirely optically anisotropic.Total removal of the thermobitumens from coals deprives the cokes from the residues after the extraction of any optical anisotropy.  相似文献   

6.
The examination of the structure of cokes obtained from extracts separated from preheated vitrites of coking coals by progressive and continuous extraction with chloroform was carried out. The structural ordering (interplanar spacing and crystallite dimensions) of the cokes depends on the rank of the parent vitrites but it does not depend on the degree of extraction. The occurrence of optical anisotropy in cokes from the extracts is connected with both the rank of the parent vitrite and the degree of extraction. In the formation of the optical anisotropic structure during the carbonization of coking coal vitrites, the part of the extract which is of small size, which partially undergoes decomposition, is an important factor.  相似文献   

7.
This study examines further the phenomena of the modification of coal carbonizations by organic additives. Anthracene, pyrene and chrysene modify the carbonization in a closed system of coking coals as observed from increases in the size of optical textures of resultant cokes. Weakly caking coals are unaffected. Chrysene is the most efficient modifier probably because of its lowest calculated free valence. The co-additives tetralin and hydrogenated anthracene oil further enhance the modification processes so obviating the necessity to use hydrogenated additives. Co-carbonizations of oxidized coking and caking coals with decacyclene are effective in removing the effects of mild oxidation. Increased rates of carbonization enhance the sizes of optical textures of resultant cokes.  相似文献   

8.
Cortonwood Silkstone (NCB class 401) and Betteshanger (NCB class 301 a/204) coals were co-carbonized with solid additives such as anthracite, coke breeze, green and calcined petroleum cokes. The resultant carbonization products (cokes) were examined by optical microscopy and SEM was used to investigate polished surfaces etched by chromic acid and fracture surfaces. For both coals only the anthracite and green petroleum coke become bonded to the coal cokes. This probably results from softening and interaction of interfaces of the anthracite and green coke with the fluid coal via a mechanism of hydrogenating solvolysis during the carbonization process. The coke breeze and calcined petroleum cokes were interlocked into the matrix of coal coke.  相似文献   

9.
The purpose of this work was to examine the possible significance in the formation of metallurgical coke of the anisotropic spherical mesophase exemplified by that found during the carbonization of pitch-like materials, and to ascertain if the various types of optical anisotropy found in coke could form a basis for the characterization of cokes produced from different coals. Vitrains from a wide range of coals were carbonized at temperatures from 370 to 1000 °C and the types and amounts of optical anisotropy in the resulting semi-cokes and cokes were determined from microscopic examination, the anisotropic components being classified according to grain size of the granular mosaics and appearance. The anisotropy developed directly from the isotropic phase, appearing initially as a fine-grained mosaic. With increasing carbonization temperature, this fine-grained mosaic was transformed into progressively coarser-grained anisotropy, the extent of this transformation depending on the rank of the vitrain. It is therefore concluded that the formation, growth and coalescence of anisotropic spherical bodies, such as occurs during the carbonization of pitch, is not a necessary precursor of the mosaic anisotropy in coke. The type and amount of anisotropy developed provide a quantitative means of characterising different cokes.  相似文献   

10.
Studies on the influence of an additive derived from coal on the coking properties of lower-rank coals and on the structure of cokes obtained from blends have been undertaken in our laboratory since 1978. The two coal extracts from flame coal (Int. Class. 900) and gas-coking coal (Int. Class. 632) were used as additives. The results indicate that the blends prepared from low-rank coals — flame coal (Int. Class. 900), gas-flame coal (Int. Class. 721) and the extracts possess better coking properties in comparison to the parent coals. The optical texture and the degree of structure ordering of the cokes obtained from blends is related to the amount of extract in the blend. With increasing extract content in the blend, increases were observed in the amount of optically anisotropic areas in cokes from low-rank coal/extract blends and the crystallite height (Lc) of cokes from the blends. The isotropic optical texture of cokes from low-rank coals can be modified by coal extracts to an anisotropic optical texture. The non-fusible coal is the most difficult to modify. An explanation of the observed phenomena is given.  相似文献   

11.
对不同变质程度的5种烟煤进行了5 kg实验焦炉炭化实验.并就单种煤的结焦性与对应焦炭的微晶结构间的关系进行了探讨.结果表明,1/3焦煤焦炭、焦煤焦炭的冷态强度和热态强度较好;X射线衍射(XRD)分析结果表明,肥煤焦炭的炭结构因子(La/Lc)最小,石墨化程度最高.焦炭的真相对密度(TRD)随着La/Lc的增大而减小.  相似文献   

12.
煤碳化成焦机理的研究进展   总被引:6,自引:2,他引:4  
申峻  邹纲明 《煤炭转化》1999,22(2):22-27
从煤碳化的中间相机理、不同煤阶煤的成焦过程、气体压力的生成,以及碳化过程中所发生的化学反应和焦炭微织态的形成过程等方面综述了近年来在煤的碳化成焦机理研究方面的新进展,指出今后应加强对煤碳化机理的研究,以利于指导炼焦生产.  相似文献   

13.
Coal-tar pitches, from coals of different rank and with various quinoline-insoluble contents, were carbonized under pressure (67 to 200 MN m−2) to maximum temperatures of 923 K. The resultant cokes were examined by optical and scanning electron microscopy in terms of size and shape of anisotropic structures within the coke. Natural quinoline-insolubles and carbon blacks both destroyed growth of the mesophase and development of anisotropy. Graphite particles (<10 μm) promoted growth and coalescence of the mesophase. Fourteen coals, of carbon content 77 to 91 wt%, VM 41 to 26%, were similarly carbonized under pressure. In the lower-rank coals no microscopically resolvable anisotropic mesophase was produced, but at a carbon content of 85% anisotropic units 1–2 μm in diameter were detected, increasing in size at a carbon content of 90% to 5 μm diameter. Results are discussed in terms of the origins of anisotropic mosaics observed in cokes, their variation in size with coal rank, and their significance in the carbonization of coal.  相似文献   

14.
在不同煤种及炭化条件下,于一间歇流化床上制备活性焦(AC)。使用XPS等分析手段考察不同制备条件下制得的活性焦表面化学性质的差异。研究结果表明,煤种不同制得的活性焦的表面性质相差较大;炭化条件(炭化温度400—800℃、炭化时间0—60min)对最终制得的彬县煤活性焦表面化学性质影响很小。  相似文献   

15.
Coals of NCB rank 301 a (coking), 502 (caking) and 802 (very weakly caking) are oxidized in air at 373 K or 383 K for up to 42 days. Spin-lattice and spin-spin relaxation times, T1 and T2 respectively, of oxidized coals are measured using a Bruker SXP 4–100 and FT spectrometer. Free radical concentrations in the coals are obtained using a JES PE e.s.r. spectrometer. Infrared spectra of oxidized coals are obtained and optical textures of cokes from fresh and oxidized coals are assessed by optical microscopy. For two coking coals, decreasing values of T1, and increasing concentration of free radicals occurred with oxidation at 383 K to 16 and 28 days. Thereupon values of T1, increased and free radical concentrations decreased with further progressive oxidation. At the point of inflexion in properties, resultant cokes from the coals ceased to shown any anisotropy in their optical textures and became isotropic resembling cokes from low-rank coals. For the caking coals, T1 increased at all stages of oxidation to 42 days with decreasing concentrations of free radicals. Two values of T2 were found in each coal corresponding to a rigid and mobile component ((T2)r < (T2)m). The rigid component (T2)r was not affected by oxidation but values of (T2)m decreased with increasing duration of oxidation. It is considered that coking and caking coals exhibit different effects of oxidation with perhaps phenols and quinones in caking coals acting as inhibitors to the growth of stable free radicals. Oxidized coking coal may behave like fresh caking coal.  相似文献   

16.
Established methods for the determination of phosphorus in coal and coke were compared and found to give results in satisfactory agreement. The method for the determination of phosphorus described in BS 1016, ‘Methods for the analysis and testing of coal and coke’, Part 9, 1977 was used to study the relation between the phosphorus content of coals and their corresponding cokes. The cokes were prepared on laboratory, test oven and industrial scales, by the carbonization of various bituminous coals within the range of volatile matter yield of 16–40 wt%. The determined values of the phosphorus contents of these cokes and their parent coals indicated that the phosphorus present in the coal is completely retained in cokes carbonized to temperatures between 900 and 1050 °C. On the basis of these experimental results it is suggested that the phosphorus content of coke can generally be calculated from a knowledge of the phosphorus content of the coal and the coke yield with an accuracy which is sufficient for normal requirements.  相似文献   

17.
Optical microscopy is widely used in the characterization of coals and cokes. This Paper shows that the laser Raman microprobe (MOLE) which combines an optical microscope and a Raman spectrometer can provide useful additional information. Three main areas were investigated: identification of minerals in coal and coke; structural characterization of coals and cokes; and the interaction of inorganic additives and coal. Where possible, the results were compared with conventional optical microscopy measurements whereby it was shown that the optical texture and Raman spectra of cokes are not closely related. The Raman spectra of high temperature cokes were used to estimate the size of microcrystalline regions.  相似文献   

18.
The behaviour in the coking process of the main petrographic constituents - vitrinites, exinites, micrinites and fusinites - separated from hard coals of different rank (from flame coal to anthracite), and the differences in structure of the obtained cokes were examined and discussed.  相似文献   

19.
The vitrain components of a series of coal samples were carbonized at temperatures from 400 to 1000°C at different rates of heating ranging from 0.5 to 10°K/min and utilizing soaking times up to 24 hr. Polished specimens prepared from the carbonized products were examined microscopically under polarized light in order to determine the proportions of the various types of optical anisotropy present in them. The variations in heating rate and soaking time were found to exert little significant influence on the anisotropy developed in high-temperature cokes. But in semicokes produced at carbonization temperatures within the plastic range the influence of the carbonization conditions was much more pronounced with the effects being inter-related. Decreasing the heating rate or increasing the soaking time led to the optical anisotropy generally becoming detectable at lower carbonization temperatures. Fast heating rates caused an increase in the rate of transformation of the fine-grain mosaic anisotropy into coarser-grained types of anisotropy and increased soaking time led to enhanced anisotropic development in the semicokes produced at temperatures within the plastic range. The type of anisotropy developed in cokes is closely related to the release of volatile matter and the plasticity developed during carbonization and the conclusion is drawn that the balance between these factors controls the extent of the anisotropic development.  相似文献   

20.
Isao Mochida  Harry Marsh  Alan Grint 《Fuel》1979,58(9):633-641
Several coals of different rank have been carbonized singly and also co-carbonized with acenaphthylene and decacyclene. The resultant cokes were mounted in resin and polished surfaces were examined for optical texture using a polarized-light optical microscope fitted with a half-wave retarder plate. The optical texture can be assessed qualitatively (visually) or quantitatively by a point-counting technique in terms of size and shape of constituent isochromatic anisotropic units. Some cokes from coals were Isotropic. Acenaphthylene was only able to exert a smaller influence than decacyclene on the optical texture of the resultant cokes from co-carbonizations. Decacyclene was able to modify the optical texture for both the low-rank non-fusible and the caking coals. The effects of changing the proportions of coal to additive were examined. Results are interpreted in terms of ‘depolymerization’ of the coal by the action of the additive (as solvent) and also by the action of the additive in modifying the processes of formation of semi-coke via nematic liquid crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号