首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonlinear bending analysis is presented for a simply supported, functionally graded rectangular plate subjected to a transverse uniform or sinusoidal load and in thermal environments. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded plate are based on Reddy's higher-order shear deformation plate theory that includes thermal effects. Two cases of the in-plane boundary conditions are considered. A mixed Galerkin-perturbation technique is employed to determine the load-deflection and load-bending moment curves. The numerical illustrations concern nonlinear bending response of functional graded rectangular plates with two constituent materials. The influences played by temperature rise, the character of in-plane boundary conditions, transverse shear deformation, plate aspect ratio and volume fraction distributions are studied.  相似文献   

2.
In the present paper, the exact solutions of a simply supported functionally graded piezoelectric plate/laminate under cylindrical bending are derived. With similar derivation procedure as that used for Stroh formalism, the eigenrelation and general solutions for the problems can be expressed in very concise forms, which are convenient for further treatments of both analytic and numerical studies. The exact solutions can be served as benchmarks to verify and improve various approximate theories and numerical methods. To show the influence of material gradients, numerical examples based on the exact solutions are given, and some properties of the mechanical and electric responses of the plates under mechanical and electrical forces are discussed.  相似文献   

3.
The static response and free vibration of metal and ceramic functionally graded shells are analyzed using the element-free kp-Ritz method. The material properties are assumed to vary continuously along the depth direction. The displacement field is expressed in terms of a set of mesh-free kernel particle functions according to Sander's first-order shear deformation shell theory. The effects of the volume fraction, material property, boundary condition, and length-to-thickness ratio on the shell deflection, axial stress, and natural frequency are examined in detail. Convergence studies of node numbers are performed to verify the effectiveness of the proposed method. Comparisons reveal that the numerical results obtained from the proposed method agree well with those from the classical and finite element methods.  相似文献   

4.
In this research, mechanical buckling of circular plates composed of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM circular plate under uniform radial compression are derived, based on the higher order shear deformation plate theory (HSDT). Assuming that the material properties vary as a power form of the thickness coordinate variable z and using the variational method, the system of fundamental partial differential equations are established. A buckling analysis of a functionally graded circular plate (FGCP) under uniform radial compression is carried out and the results are given in closed-form solutions. The results are compared with the buckling loads of plates obtained for FGCP based on the first order shear deformation plate theory (FSDT) and classical plate theory (CPT) given in the literature. The study concludes that HSDT accurately predicts the behavior of FGCP, whereas the FSDT and CPT overestimates buckling loads.  相似文献   

5.
An improved third order shear deformation theory is employed to investigate thermal buckling and vibration of the functionally graded beams. A power law distribution is used to describe the variation of volume fraction of material compositions. The functionally graded material properties are assumed to vary smoothly and continuously across the thickness of the beams. The Ritz method is adopted to solve the eigenvalue problems that are associated with thermal buckling and vibration in various types of immovable boundary conditions. The parametric study covered in this paper includes the effects of material composition, temperature-dependent material properties, and slenderness ratio.  相似文献   

6.
A new hyperbolic shear deformation theory taking into account transverse shear deformation effects is presented for the buckling and free vibration analysis of thick functionally graded sandwich plates. Unlike any other theory, the theory presented gives rise to only four governing equations. Number of unknown functions involved is only four, as against five in case of simple shear deformation theories of Mindlin and Reissner (first shear deformation theory). The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded sandwich plates are obtained using the Navier solution. The results obtained for plate with various thickness ratios using the theory are not only substantially more accurate than those obtained using the classical plate theory, but are almost comparable to those obtained using higher order theories with more number of unknown functions.  相似文献   

7.
An exact closed-form procedure is presented for free vibration analysis of moderately thick rectangular plates having two opposite edges simply supported (i.e. Lévy-type rectangular plates) based on the Reissner-Mindlin plate theory. The material properties change continuously through the thickness of the plate, which can vary according to a power law distribution of the volume fraction of the constituents. By introducing some new potential and auxiliary functions, the displacement fields are analytically obtained for this plate configuration. Several comparison studies with analytical and numerical techniques reported in literature are carried out to establish the high accuracy and reliability of the solutions. Comprehensive benchmark results for natural frequencies of the functionally graded (FG) rectangular plates with six different combinations of boundary conditions (i.e. SSSS-SSSC-SCSC-SCSF-SSSF-SFSF) are tabulated in dimensionless form for various values of aspect ratios, thickness to length ratios and the power law index. Due to the inherent features of the present exact closed-form solution, the present results will be a useful benchmark for evaluating the accuracy of other analytical and numerical methods, which will be developed by researchers in the future.  相似文献   

8.
In this paper, thermal buckling analysis is performed on hybrid functionally graded plates (FGPs) with an arbitrary initial stress. The governing equations are derived using the average stress method, including the effect of transverse shear deformation. Then, an eigenvalue problem is formed to evaluate thermal buckling temperatures for simple supported initially stressed ceramic-FGM-metal plates. The effects of functionally graded material (FGM) layer thickness, volume fraction index, layer thickness ratio, thickness ratio, aspect ratio and initial stress on the thermal buckling temperature of hybrid FGPs are investigated. The results reveal that the volume fraction index, initial stresses and FGM layer thickness have significant influence on the thermal buckling of hybrid FGPs.  相似文献   

9.
In this paper, an analytical solution is provided for the postbuckling behaviour of moderately thick plates and shallow shells made of functionally graded materials (FGMs) under edge compressive loads and a temperature field. The material properties of the functionally graded shells are assumed to vary continuously through the thickness of the shell, according to a power law distribution of the volume fraction of the constituents. The fundamental equations for moderately thick rectangular shallow shells of FGM are obtained using the von Karman theory for large transverse deflection and high-order shear deformation theory for moderately thick plates. The solution is obtained in terms of mixed Fourier series and the obtained results are compared with those of the Reissner–Mindlin's theory for moderately thick plates and the classical theory ignoring transverse shear deformation. The effect of material properties, boundary conditions and thermomechanical loading on the buckling behaviour and the associated stress field are determined and discussed. The results reveal that thermomechanical coupling effects and the boundary conditions play a major role in dictating the response of the functionally graded plates and shells under the action of edge compressive loads.  相似文献   

10.
This paper presents an investigation of the stochastic bending response of moderately thick, compositionally graded plates with uncertainties of low variability and subjected to lateral load and uniform temperature change. System parameters such as the thermal and mechanical material properties of each constituent material, volume fraction index, and load intensity are taken as independent random variables. The basic formulations are based on Reddy's higher-order shear deformation plate theory and a semi-analytical method. A first-order perturbation technique is employed to obtain the second-order response statistics-mean and variance of the flexural deflection of plates with various boundary conditions. Typical results are presented for two types of plates containing functionally graded materials made of metallic phase Ni and ceramic phase Al2O3. It is found that the response sensitivity of the plate is very much dependent on the material composition. Variations in Young's modulus and lateral load have dominant effects on the stochastic characteristics compared to other random parameters. The deflection dispersion of compositionally graded plates shows the so-called “non-intermediate” characteristic even when thermal loading is absent.  相似文献   

11.
An exact closed-form frequency equation is presented for free vibration analysis of circular and annular moderately thick FG plates based on the Mindlin's first-order shear deformation plate theory. The edges of plate may be restrained by different combinations of free, soft simply supported, hard simply supported or clamped boundary conditions. The material properties change continuously through the thickness of the plate, which can vary according to a power-law distribution of the volume fraction of the constituents, whereas Poisson's ratio is set to be constant. The equilibrium equations which govern the dynamic stability of plate and its natural boundary conditions are derived by the Hamilton's principle. Several comparison studies with analytical and numerical techniques reported in literature and the finite element analysis are carried out to establish the high accuracy and superiority of the presented method. Also, these comparisons prove the numerical accuracy of solutions to calculate the in-plane and out-of-plane modes. The influences of the material property, graded index, thickness to outer radius ratios and boundary conditions on the in-plane and out-of-plane frequency parameters are also studied for different functionally graded circular and annular plates.  相似文献   

12.
In this paper we present a new application for a four variable refined plate theory to analyse the nonlinear cylindrical bending behavior of functionally graded plates subjected to thermomechanical loadings. This recent theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The material properties are assumed to vary continuously through the thickness of the plate according to a power-law distribution of the volume fraction of the constituents. The non-linear strain-displacement relations in the von Karman sense are used to study the effect of geometric non-linearity. The solutions are achieved by minimizing the total potential energy and the results are compared to the classical and the first-order theories reported in the literature. It can be concluded that the proposed theory is accurate and simple in solving the nonlinear cylindrical bending behavior of functionally graded plates.  相似文献   

13.
In the present work, study of the vibration of thin cylindrical shells with ring supports made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. Effects of boundary conditions and ring support on the natural frequencies of the FGM cylindrical shell are studied. The cylindrical shells have ring supports which are arbitrarily placed along the shell and which imposed a zero lateral deflection. The study is carried out using different shear deformation shell theories. The analysis is carried out using Hamilton’s principle. The governing equations of motion of a FGM cylindrical shells are derived based on various shear deformation theories. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature. This paper was recommended for publication in revised form by Associate Editor Eung-Soo Shin M. M. Najafizadeh received his BS degree in 1995 from Azad University (Arak) and the Ms Degree in 1997 from Azad University (Arak), and his Ph.D. degree in 2003 from Science and Research Branch Islamic Azad University (Tehran, Iran), all in mechanical Engineering. He is member of faculty in Islamic Azad University (Arak) since 1998. He teaches courses in the areas of dynamics, theory of plates and shells and finite element method. He has published more than 20 articles in journals and conference proceeding. Mohammad Reza Isvandzibaei received his Ms Degree from Azad University (Arak), and now he is the student of Ph.D. in university of Pune, (India) all in mechanical Engineering. He is member of faculty in Islamic Azad University (Andimeshk).  相似文献   

14.
The nonlinear response of functionally graded ceramic-metal shell panels under mechanical and thermal loading is studied. The nonlinear formulation is based on a modified version of Sander's nonlinear shell theory, in which the geometric nonlinearity takes the form of von Kármán strains. It is assumed that the material properties vary through the thickness according to a power-law distribution of the volume fraction of the constituents. The displacement field is expressed in terms of a set of mesh-free kernel particle functions. The bending stiffness is evaluated using a stabilized conforming nodal integration technique, and the shear and membrane terms are computed using a direct nodal integration to eliminate shear and membrane locking. The arc-length method, combined with the modified Newton-Raphson approach, is employed to trace the full load-displacement path. The characteristic of the displacement and the axial stress in panels under thermal and mechanical loading is investigated, and the effects of the volume fraction exponent, boundary conditions, and material properties on the nonlinear response of shell panels are also examined.  相似文献   

15.
Based on the nonlinear large deflection theory of cylindrical shells as well as the Donnell assumptions, this paper presents nonlinear buckling and postbuckling analyses for axially compressed functionally graded cylindrical shells by using the Ritz energy method and the nonlinear strain-displacement relations of large deformation. The material properties of the shells vary smoothly through the shell thickness according to a power law distribution of the volume fraction of constituent materials. Meanwhile, by taking into account the temperature-dependent material properties, various effects of external thermal environment are also investigated. Numerical results show various effects of the inhomogeneous parameter, dimensional parameters and external thermal environments on nonlinear buckling and postbuckling behaviors. There is a mode-jumping observed after buckling. The present theoretical results are verified by those in the literature.  相似文献   

16.
Electromechanical responses of compositionally graded piezoelectric layers are analysed. The layers consist of polycrystalline piezoelectric ceramics poled along the thickness direction, and thus exhibit material symmetry of a hexagonal crystal in class 6mm. Two cases for layers (i) covered by surface electrodes and (ii) without surface electrodes are considered. Analytical solutions are exact in Saint Venant's sense for both cases. However, solutions are obtained for layers subjected to uniform mechanical loads, including stretch, bending and twisting. Numerical results to show the effects of different compositional gradients are presented.  相似文献   

17.
Vibration of functionally graded cylindrical shells   总被引:5,自引:0,他引:5  
Functionally gradient materials (FGMs) have attracted much attention as advanced structural materials because of their heat-resistance properties. In this paper, a study on the vibration of cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of configurations of the constituent materials on the frequencies. The properties are graded in the thickness direction according to a volume fraction power-law distribution. The results show that the frequency characteristics are similar to that observed for homogeneous isotropic cylindrical shells and the frequencies are affected by the constituent volume fractions and the configurations of the constituent materials. The analysis is carried out with strains–displacement relations from Love’s shell theory and the eigenvalue governing equation is obtained using Rayleigh–Ritz method. The present analysis is validated by comparing results with those in the literature.  相似文献   

18.
Sandwich panels are a type of panel offering weight savings over standard single layer panels, whilst remaining both strong and stiff. However, due to the mismatch of properties between the face sheets and the core, stress concentrations can occur at the face sheet/core interfaces, often leading to delamination. One possible solution to this problem is the introduction of a functionally graded core—a core in which the properties vary gradually from the face sheets to the centre, eliminating any abrupt changes in properties. This paper presents a three-dimensional elasticity analysis for a sandwich panel with stiffness of the core graded in the thickness direction, on the basis of the recently developed 3D elasticity solution. A comparative study of panels with homogeneous and functionally graded cores is carried out to examine the effect of introducing a graded core on the stress and displacement fields under five different loading configurations (uniformly distributed, patch, point, hydrostatic and line).  相似文献   

19.
This paper deals with the nonlinear vibration and dynamic response of simply supported shear deformable cross-ply laminated plates with piezoelectric actuators subjected to mechanical, electrical and thermal loads. The material properties are assumed to be independent of the temperature and electric field. Theoretical formulations are based on the higher order shear deformation plate theory and general von Kármán-type equation, which includes thermo-piezoelectric effects. Due to the bending and stretching coupling effects, a nonlinear static problem is first solved to determine the pre-vibration deformation caused by temperature field and control voltage. By adding an incremental dynamic state to the pre-vibration state, the equations of motion are solved by an improved perturbation technique to determine nonlinear frequencies and dynamic responses of hybrid laminated plates. The numerical illustrations concern nonlinear vibration characteristics of unsymmetric cross-ply laminated plates. The results presented show the effects of temperature rise, applied voltage and stacking sequence on the nonlinear vibration and dynamic response of the plates.  相似文献   

20.
This paper presents a study on the postbuckling response of a shear deformable functionally graded cylindrical shell of finite length embedded in a large outer elastic medium and subjected to axial compressive loads in thermal environments. The surrounding elastic medium is modeled as a tensionless Pasternak foundation that reacts in compression only. The postbuckling analysis is based on a higher order shear deformation shell theory with von Kármán-Donnell-type of kinematic nonlinearity. The thermal effects due to heat conduction are also included and the material properties of functionally graded materials (FGMs) are assumed to be temperature-dependent. The nonlinear prebuckling deformations and the initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the postbuckling response of the shells and an iterative scheme is developed to obtain numerical results without using any assumption on the shape of the contact region between the shell and the elastic medium. Numerical solutions are presented in tabular and graphical forms to study the postbuckling behavior of FGM shells surrounded by an elastic medium of tensionless Pasternak foundation, from which the postbuckling results for FGM shells with conventional elastic foundations are also obtained for comparison purposes. The results reveal that the unilateral constraint has a significant effect on the postbuckling responses of shells subjected to axial compression in thermal environments when the foundation stiffness is sufficiently large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号