首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wide range of parameter surveys are made on the DT fusion tokamak experimental reactor next to JT-60. Various physics and engineering requirements are taken into account, e.g. self-ignition, available maximum toroidal β value, α-particle confinement, total fusion power, neutron wall loading, heat flux to divertor plate, structural restriction on major radius, device size, maximum toroidal magnetic field, poloidal field power supply and so on. Theoretical scaling law for the available maximum toroidal β value determined by ballooning mode instability is used. The toroidal magnetic field on plasma axis can be expressed by the aspect ratio A for a given maximum field at the toroidal field coil conductor. Empirical scaling law for the electron energy confinement and neoclassical heat conductivity for the ion are employed. These confinement times can be expressed by the plasma minor radius a and A through the maximum available β value and the toroidal field on axis. In the similar way, most of the physics and engineering requirements can be mapped on the a-A diagram. This diagram enables us to make systematic and wide range of parameter surveys of the device. In particular, this offers a clear perspective on the device parameters, which can mitigate the engineering difficulties and can also realize the required plasma performances.  相似文献   

2.
In order to demonstrate the modulation of terahertz wave propagation in atmospheric pressure microplasmas, in this work, the band structure and the transmission characteristics of a onedimensional collisional microplasma photonic crystal are investigated, using the transfer matrix method. For a lattice constant of 150 μm and a plasma width of 100 μm, three stopbands of microplasma photonic crystal are observed, in a frequency range of 0.1–5 THz. Firstly, an increase in gas pressure leads to a decrease in the central frequency of the stopband. When the gas pressure increases from 50.5 kPa to 202 kPa, the transmission coefficient of the THz wave first increases and then decreases at high frequency, where the wave frequency is much greater than both the plasma frequency and the collision frequency. Secondly, it is interesting to find that the central frequency and the bandwidth of the first THz stopband remain almost unchanged for electron densities of less than 1015 cm–3, increasing significantly when the electron density increases up to 1016 cm–3. A central frequency shift of 110 GHz, and a bandgap broadening of 200 GHz in the first stopband are observed. In addition, an atmospheric pressure microplasma with the electron density of 1 × 1015–6 × 1015 cm–3 is recommended for the modulation of THz wave propagation by plasma photonic crystals.  相似文献   

3.
Neutronic studies of European demonstration fusion power plant (DEMO) have been so far based on plasma physics low confinement mode (L-mode). Future tokamaks, nevertheless, may likely use alternative confinement modes such as high or advanced confinement modes (H&A-mode). Based on analytical formulae used in plasma physics, H&A-modes D-T neutron sources formulae are proposed in this paper. For that purpose, a tokamak random neutron source generator, TRANSGEN, has been built generating bidimensional (radial and poloidal) neutron source maps to be used as input for neutronics Monte-Carlo codes (TRIPOLI-4 and MCNP5). The impact of such a source on the neutronic behavior of the European DEMO-2007 Helium-cooled lithium–lead reactor concept has been assessed and compared with previous results obtained using a L-mode neutron source. An A-mode neutron source map from TRANSGEN has been used with the code TRIPOLI-4. Assuming the same fusion power, results show that main reactor global neutronic parameters, e.g. tritium breeding ratio and neutron multiplication factor, evolved slightly when compared to present uncertainties margin. However, local parameters, such as the neutron wall loading (NWL), change significantly compared to L-mode shape: from ?22% to +11% for NWL.  相似文献   

4.
In this paper, the propagation of dust-ion-acoustic (DIA) waves in a magnetized collisionless complex (dusty) plasma consisting of superthermal electrons are investigated. In the discharge plasma, the electron temperature is usually much greater than ion temperature. Thus, the electron distribution function DF), is generally nonmaxwellian, has to be modeled. For this purpose, the generalized Lorentzian ( $ \kappa $ )-DF is used to simulate the electron DF. Two types of modes (fast and slow DIA modes) exist in this plasma. By deriving Korteweg-de Vries (KdV) equation, using reductive perturbation method, both regions of solitary waves, rarefactive (dark) and compressive (bright) solitary waves, are allowed to be propagated in this plasma. Properties of DIA solitary waves are investigated numerically. How dust grains and superthermal electrons affect the sign and the magnitude of nonlinear coefficient of KdV equation is also discussed in detail. It is noted that the velocity, amplitude, and width of a DIA soliton is studied as well.  相似文献   

5.
We investigate the Terahertz(THz) plasma waves in a two-dimensional(2D) electron gas in a nanometer field effect transistor(FET) with quantum effects, the electron scattering,the thermal motion of electrons and electron exchange-correlation. We find that, while the electron scattering, the wave number along y direction and the electron exchange-correlation suppress the radiation power, but the thermal motion of electrons and the quantum effects can amplify the radiation power. The radiation frequency decreases with electron exchange-correlation contributions, but increases with quantum effects, the wave number along y direction and thermal motion of electrons. It is worth mentioning that the electron scattering has scarce influence on the radiation frequency. These properties could be of great help to the realization of practical THz plasma oscillations in nanometer FET.  相似文献   

6.
We consider the coupling of the radiative heat transfer equations and the energy equation for the temperature T of a compressible fluid within the finite segment [0, L]. Using the technique of upper and lower sequences associated to integro-parabolic equations, we establish the existence and uniqueness of a classical solution T, 0 ? Λ ? T(xt) ? Λ+ < ∞ with corresponding radiative intensity I(xΩνt). The boundary is considered to be semi-reflexive with reflection coefficient ρ, 0 ? ρ(μ) ? 1. The existence of the solution for the coupled system does not depend on any additional hypotheses besides that the total absorption coefficient is bounded and that the ratio between the coefficients of scattering and total absorption is uniformly bounded. As well we present numerical results for the coupled evolutive problem. Using the operational representation encountered in the course of establishing the existence theory, we derive vector Green’s functions for the transport equation which allow us to solve numerically the coupled system.  相似文献   

7.
The reactions such as; D?+?3 He and p?+?11B are aneutronic fusion reactions that, in characteristic conditions create degenerate plasma. The electronic stopping power of degenerate plasma is smaller than the classical plasma, because some transitions between the electron states are forbidden. The equations that predict the behavior of these plasmas are different from the classical ones, and this is the main factor in decreasing the ignition temperature of the plasma. In this research, the nuclear fusion in deuterium–helium with a small seeding born, D/3 He/11B, is considered using a time dependent model based on nuclear reactions, including ion-electron collisions, Bremsstrahlung losses and mechanical expansion. The effect of the initial born concentration on ignition temperature and energy gain is analyzed with calculating the effect of radiation loss in ignition temperature.  相似文献   

8.
To satisfy the demands for compact, inexpensive terahertz (THz) sources with power of hundreds of watts, a radial sheet beam THz source which does not require an external magnetic field and is driven by a radial pseudospark discharge plasma electron gun (PSDP-EGUN) is proposed. Radial design has been used in pseudospark switches, but in this paper the design of a PSDP-EGUN to drive a radial THz source is presented for the first time. Being different from the latest reported axial quasi-rectangular sheet beam THz sources driven by an axial PSDP-EGUN, a new design consisting of a circular plate-shaped sheet beam that is directly generated by the radial PSDP-EGUN is reported. As compared to an axial system, the radial configuration may result in a larger beam current and a larger beam-wave interaction area together with a higher potential of THz output power. Theoretical analysis and particle-in-cell simulation have been employed in the design of the radial sheet beam THz source. Output powers in the kilowatt range have been observed in the simulation of this 0.22 THz source. Preliminary experimental results of the radial PSDP-EGUN are also presented.  相似文献   

9.
Systematic spectroscopic studies and diagnostics of an atmospheric pressure radiofrequency (13.56 MHz) He plasma is presented. The discharge is an intrinsic part of the resonant circuit of the radiofrequency oscillator and was obtained using a monoelectrode type torch, at various gas flow-rates (0.1-6.0 l/min) and power levels (0-2 W). As function of He flow-rate and power the discharge has three developing stages: point-like plasma, spherical plasma and ellipsoidal plasma. The emission spectra of the plasma were recorded and investigated as function of developing stages, flow-rates and plasma power. The most important atomic and molecular components were identified and their evolution was studied as function of He flow-rate and plasma power towards understanding basic mechanisms occurring in this type of plasma. The characteristic temperatures (vibrational Tvibr, rotational Trot and excitation Texc) and the electron number density (ne) were determined.  相似文献   

10.
The generation of terahertz (THz) waves via the beating of two high-intensity chirped Gaussian lasers in a multi-ion-species plasma is numerically studied by taking into account the weak relativistic and ponderomotive regime of interaction. The coupled differential equations for beamwidth parameters are extracted by introducing the dielectric function of such plasma and using WKB and paraxial ray approximations. The amplitude of THz radiation at beat frequency resulting from the nonlinear current density induced by the beat ponderomotive force of the cross-focusing of beams was obtained. The impacts of the chirp frequency parameter, initial laser intensity and initial ionic species density (specifically, the presence of singly and doubly charged ions) in the plasma on THz generation were discussed. Our numerical results reveal that THz radiation generation strongly depends on the chirp frequency parameter. A specific range of chirp frequencies exists for self-focusing as well as THz generation with a 'turning point', where the THz emission reaches its maximum value. The results show that the strength of self-focusing and consequently the generated THz radiation are reduced by increasing the density of doubly charged ionic species in the plasma due to the suppression of the nonlinear effects.  相似文献   

11.
Triple-probe has been developed and operated successfully to characterize ECRH-assisted argon as well as hydrogen microwave plasmas in GLAST Spherical Tokamak. This technique enables to determine transient plasma parameters such as floating potential, electron temperature and electron number density in rapidly time-varying plasmas. An effective electron heating mechanism is applied to produce microwave plasma by injecting radiofrequency (RF) radiation at a frequency of 2.45 GHz in the presence of resonant toroidal magnetic field. Plasma parameters and corresponding fluctuations are measured as a function of time in different gas fill pressures for various applied magnetic fields. The results demonstrate the dependence of plasma parameters such as V f , T e , n e and their fluctuations on gas fill pressure during the pre-ionization phase of the GLAST operation. Plasma behavior is observed to be closely depending on the coupling of RF power during microwave discharge. Additionally, the hydrogen plasma shows pronounced fluctuations in comparison with argon plasma with some decrease in electron temperature and densities.  相似文献   

12.
In this article we studied the feasibility of proton-boron (p11B) fusion in plasmoids produced by plasma pinch devices like plasma focus facility as commercially sources of energy. In plasmoids fusion power for 76 keV < Ti < 1,500 keV exceeds bremsstrahlung loss (W/Pb = 5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion–electron collision rate due to quantization of electron orbits. While approximately there is no change in electron–ion collision rate, The effect of quantum magnetic field makes ions much hotter than electrons which enhances the fraction of fusion power to bremsstrahlung loss.  相似文献   

13.
Charge exchange of medium energy H and He ions emerging from clean solid surfaces is studied extensively using a toroidal electrostatic analyzer with an excellent energy resolution. The charge distributions of He ions scattered from sub-monolayers near a surface are non-equilibrated, resulting in a surface peak even for poly-crystal solids. By solving simultaneous rate equations numerically, we derive electron capture and loss cross sections for Ni and Au surfaces. Based on a free electron gas model, non-equilibrated He+ fractions dependent on emerging angle reveals uniform electronic surfaces for metals and corrugated surfaces for Si and graphite with covalent bonds. It is also found that equilibrium charge fractions of H+ are independent of surface materials (Z2) and in contrast equilibrium He+ fractions depend pronouncedly on Z2. The data obtained are compared with semi-empirical formulas.  相似文献   

14.
Experimental observations in Damavand tokamak show that hard X-ray is produced by either disruption with I p  < 20 kA or by shots with I p  > 20 kA. Hard X-ray also persists from the initiation of plasma discharge to the end. Occurrence of multiple spikes in hard X-ray during the discharge is evident. The propagation of hard X-ray is attributed to runaway electrons. We observe runaway electrons in two regimes with different characteristics. Regime (RADI) is similar to the observations of other Tokamak during disruption on that the plasma current is reduced abruptly and interpreted by Dreicer theory. In the regime of RADII, hard X-ray and subsequently runaway electrons are observed from starting of plasma discharge which provides the condition that the most of runaway electrons contain the toroidal plasma current. Runaway electron beam excites whistler waves and scattered electrons in velocity space and prevent growing the runaway electrons beam.  相似文献   

15.
The magnetic field of the permanent magnet electron cyclotron resonance (ECR) ion source SWISSCASE located at the University of Bern has been numerically simulated and experimentally investigated. For the first time the magnetized volume qualified for electron cyclotron resonance at 10.88 GHz and 388.6 mT has been analyzed in highly detailed 3D simulations with unprecedented resolution. The observed pattern of carbon coatings on the source correlates strongly with the electron and ion distribution in the ECR plasma of SWISSCASE. Under certain plasma conditions the ion distribution is tightly bound to the electron distribution and can considerably simplify the numerical calculations in ECR related applications such as ECR ion engines and ECR ion implanters.  相似文献   

16.
Nonlinear density functional results for the stopping power and straggling of ions moving slowly (υυf) in an electron gas are presented. A self-energy formalism is used to estimate the charge state of a proton moving at intermediate velocities in an electron gas. The contribution of the surface to the energy loss of slow ions is also analyzed, within the specular reflection model.  相似文献   

17.
The TCV tokamak contributes to the physics understanding of fusion plasmas, broadening the parameter range of reactor relevant regimes, by investigations based on an extensive use of the existing main experimental tools: flexible shaping and high power real time-controllable electron cyclotron heating (ECH) and current drive (ECCD) systems. A proposed implementation of direct ion heating on the TCV by the installation of a 20–35 keV neutral beam injection (NBI) with a total power of 1–3 MW would permit an extension of the accessible range of ion to electron temperatures (Ti/Te  0.1–0.8) to well beyond unity, depending on the NBI/ECH mix and the plasma density. A NBI system would provide TCV with a tool for plasma study at reactor relevant Ti/Te ratios ~1 and in investigating fast ion and MHD physics together with the effects of plasma rotation and high plasma β scenarios. The feasibility studies for a NBI heating on TCV presented in this paper were undertaken to construct a specification for the neutral beam injectors together with an experimental geometry for possible operational scenarios.  相似文献   

18.
The inhomogeneity is introduced by a nonzero density gradient which separates the plasma into two different regions where plasma density are constant. The Alfvén waves, the phase mixing and the fast magnetosonic wave are excited by the boundary condition in inhomogeneous magnetized plasma. By using the Hall–magnetohydrodynamics(MHD) model, it is found that there are Alfvén waves in the homogeneous regions, while the phase mixing appears in the inhomogeneous region. The interesting result is that a fast magnetosonic wave is excited in a different direction which has a nonzero angle between the wave propagation direction and the direction of the background magnetic field. The dependence of the propagation direction of the excited fast magnetosonic wave and its strength of the magnetic field on the plasma parameters are given numerically. The results show that increasing both the driving frequency and the ratio of magnetic pressure to thermal pressure will increase the acceleration of the electrons. The electron acceleration also depends on the inhomogeneity parameters.  相似文献   

19.
When uranium vapor is generated with an electron beam evaporator, a uranium plasma is formed on the evaporating surface. This plasma rises and expands with the vapor. Propagation behavior of this plasma was investigated by measuring plasma parameters, drift energy of ions and vapor flux along the propagation path. Over the range of 20-50 cm from the evaporation surface, the plasma density decreased from 3 × 109 cm?3 to 3 × 108 cm?3, while the electron temperature had a constant value of 0.29 eV. When the space potential was lowered from 1.48 to 0.80 V, the plasma ions were accelerated to increase the drift energy from 1.50 to 2.14 eV. Validity of the Boltzmann electron distribution was checked by comparing the space potential distribution with the plasma density distribution, and also the floating potential distribution with the ion flux distribution. These results confirm that the ambipolar diffusion governs the plasma propagation behavior. The change in the plasma density during its propagation occurred not only by an increase of plasma volume, but by the ion acceleration toward the propagation direction as well.  相似文献   

20.
Nuclear reactor operating modes under multiple cyclic power changes have been promoted recently, and fuel element cladding behavior under the multiple cyclic power changes has been widely known as a key issue in terms of rod design and reliability. A model of nuclear reactor fuel rod cladding failure estimation under multiple cyclic power changes is proposed. The model is built on the basis of the following admissions of the energy version of creep theory: processes of cladding creep and destruction proceed together and affect each other, intensity of creep process is estimated by specific dispersion power W(τ), while intensity of destruction—by specific dispersion energy A(τ) accumulated during time τ. Having calculated the equivalent stress and the rate of equivalent creep strain, the condition of fuel rod cladding failure used on the basis of the energy version of the theory of creep gives us a criterion to decide if a multiple cyclic power change operating mode is permissible for a given variant of power history and coolant conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号