首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transmission of 500, 800, and 1000 eV electrons through a tapered Borosilicate glass capillary was studied for the first time. Interestingly, almost no transmission was seen for the lowest energy (500 eV), while electrons were transmitted for the higher two energies. The time (charge) dependence of the electron transmission intensity at 1000 eV was examined for tilt angles up to 1.0° with sudden bursts of elastic transmission at the lower sample tilt angles occurring. No stable equilibrium was seen even at long charge times for the measured tilt angles. The results reveal unique features of electron transmission through tapered glass capillaries compared to what has been observed for highly charged ions and electrons so far.  相似文献   

2.
Experiments for guided transmission of 3 keV Ne7+ ions through nanocapillaries in insulating PET polymers are reported. The ion guiding was studied for a two types of PET samples which consist of 200 nm capillaries with densities of and . The width of the emission profile and the fraction of transmitted ions were measured as a function of the capillary tilt angle. For the high capillary density the profile width of the transmitted ions is independent of the tilt angle in agreement previous studies. However, for the low-density sample the profile width was found to increase by a factor of 2 as the tilt angle increases from 0° to 8°. The results for the fraction of transmitted ions are used to evaluate the guiding angle, which specifies the guiding power of the material. The guiding powers were found to be equal for the two samples. The present results are discussed in terms of scaling laws, which have recently been established.  相似文献   

3.
Highly charged ions produced in an electron beam ion trap, Iq+, q = 10-50, were transmitted through a tapered glass capillary having diameter of at the end. We found that for a particular beam current, there exists an optimum tilting angle of the capillary in which a steady output of ions is observed, while for smaller angles, the ion counts first rise, then gradually decay on a time scale of minutes. In the case of steady transmission, the charge state distribution is found to be slightly towards the lower side.  相似文献   

4.
We have measured the fraction of the ions transmitted through nanocapillaries with their initial charge state for 200 keV Xe7+ ions impact on a polycarbonate (PC) foil with a thickness of 30 μm and a diameter of 150 nm. An Au film was evaporated on both the front and back side. It is found that more than 97% of the transmitted ions remain in their initial charge state. Then, the transmitted ion fraction and the characteristic tilt angle of 40 keV Xe7+ ions through this foil and another one with the same thickness and diameter, but evaporated by Au only on the front side, were measured. By comparing the results of these two foils, the influence of the ions deposited in the capillary exit region on the transmitted ion fraction and the characteristic tilt angle is studied. In comparison with the foil evaporated by Au on both sides, the maximum transmitted ion fraction of the foil evaporated by Au on the front side only is nearly 4 times smaller. Also, the characteristic tilt angle is slightly decreased. These results are discussed within the models for the guiding effect.  相似文献   

5.
Multiply charged ion beam transmission through insulating capillaries is today a very active field of research. Thanks to the work of several groups during the last five years, several features of this unexpected process have been evidenced. The open challenge is to understand and control the self-organized charging-up of the capillary walls, which leads finally to the ion transmission. Up to now, the specific charge distribution on the inner surface, as well as the dynamics of the build-up, are still to be understood. While capillaries usually studied are microscopic pore networks etched in different materials, our concern is in macroscopic single capillaries made of glass. With a length of several centimeters and a diameter of a few micrometers at the exit, these capillaries have nevertheless the same aspect ratio as the etched pores (length/diameter ≈ 100). One of the leading goals of this research on single capillaries is to produce multi-charged ion beams with diameters smaller than a micrometer (nano-beams). These glass capillaries offer the opportunity to be used as an ion funnel due to their amazing properties of guiding and focusing highly charged ion beams without altering neither their initial charge state nor the beam emittance (<10−3 π mm mrad). However, the understanding of the underlying process is not complete and relies on models assuming charge patches distributed along the capillary and which still need to be tested. We present the first observation imaging the dynamics of the charging-up process in single glass capillaries. During the build-up of the self-organized charge deposition on the capillary walls, the 230 keV Xe23+ transmitted beam is deflected back and forth several times as the outgoing current increases. This is in agreement with the picture of charge patches created sequentially along the capillary and thus deflecting the beam until a stationary state is reached.  相似文献   

6.
We measured the time evolution of the guided transmission of 3 keV Ne7+ ions through nanocapillaries in insulating PET polymers. Capillaries with a diameter of 200 nm and a density of 4 × 106 cm−2 were used. The angular distribution of the transmitted ions was measured as a function of the charge deposited on the sample surface, which is a measure of time. The evolution of the angular transmission profiles was acquired for different tilt angles ranging from 0° to 5°. The transmission profiles appear as a superposition of essentially 3 localized peaks which exhibit significant changes in intensity as time varies. This observation provides evidence for the formation of temporary charge patches produced in the interior of the capillary besides the primary charge patch created in the entrance region.  相似文献   

7.
Charge (time) evolution and the angular dependence of incident electrons in the range 300-1030 eV through a single macroscopic glass capillary was studied. Charge measurements were done at a sample tilt angle of ψ = 2? for observation angles θ = 0? and 0.5? (both ψ and θ were measured with respect to the incident beam direction) at incident energies of 520.7 and 824.5 eV using a parallel-plate spectrometer. After equilibrium of transmission, electrons had lower average centroid (mean) energies than the respective primary beam values. Centroid energies of transmitted electrons at the centroid of the angular distribution (where the observation angle θ is nearly equal to tilt angle of the sample ψ) were found to decrease exponentially with increasing sample tilt angles for all the measured electron energies. This energy loss is attributed to inelastic scattering of electrons with the inner wall of the sample close to the capillary entrance. Furthermore, the centroid energies of the transmitted electron angular distributions at 520.7 eV were found to lose energy for angular positions away from the capillary axis (angular centroid position) for all tilt angles, indicating a higher degree of inelastic scattering at the edges of the angular distributions.  相似文献   

8.
Transmission of a few keV impact energy Ne6+ ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we focus our attention to the measurements with the MCP array. The alumina capillaries were prepared by electro-chemical oxidation of aluminium foils. For the present experiments guiding of 3-6 keV Ne6+ ions has been studied in two samples with capillary diameter of about 140 nm and 260 nm and with capillary length of about 15 μm. At these energies, the ions have been efficiently guided by the capillaries up to few degrees tilt angle. In this work, we compare the results obtained by the energy dispersive spectrometer to those studied by the MCP array.  相似文献   

9.
Measurements have been performed of scintillation light intensities emitted from various inorganic scintillators irradiated with low-energy beams of highly-charged ions from an electron beam ion source (EBIS) and an electron cyclotron resonance ion source (ECRIS). Beams of xenon ions Xeq+ with various charge states between q = 2 and q = 18 have been used at energies between 5 and 17.5 keV per charge generated by the ECRIS. The intensity of the beam was typically varied between 1 and 100 nA. Beams of highly charged residual gas ions have been produced by the EBIS at 4.5 keV per charge and with low intensities down to 100 pA. The scintillator materials used are flat screens of P46 YAG and P43 phosphor. In all cases, scintillation light emitted from the screen surface was detected by a CCD camera. The scintillation light intensity has been found to depend linearly on the kinetic ion energy per time deposited into the scintillator, while up to q = 18 no significant contribution from the ions’ potential energy was found. We discuss the results on the background of a possible use as beam diagnostics, e.g. for the new HITRAP facility at GSI, Germany.  相似文献   

10.
The 6.4 MeV 15N2+ ion beams are focused using glass capillary optics. The transmitted beam includes ions which have suffered slight energy loss. The areal density of the transmitted beam is enhanced by approximately 10 times, and the enhancement factor does not depend on the incident beam current. The NRA spectrum intensity decreases with the increase of the capillary taper angle. These results all together suggest that the nuclear forward scattering is more significant in the focusing mechanism than the low energy ions case.  相似文献   

11.
In this work, we present the experimental results of a laser ion source (LIS) implemented for ion accelerators. A KrF excimer laser beam operating at 248 nm was focused on a solid target mounted inside a vacuum chamber in order to obtain the plasma. The laser energy was fixed at 11.5 mJ/pulse. The ion components of the plasma were extracted and accelerated up to 160 keV per charge state by a double gap system formed in two different stages. The beam cross section was circular, 1.5 cm in diameter. Using Cu and Y disks, as laser targets, we produced ion beams containing 1.2 × 1011 ions/pulse (0.7 × 1011 ions/cm2). Applying a total accelerating voltage of 60 kV we obtained an increase in ion dose up to 3.4 × 1011 ions/pulse, (2 × 1011 ions/cm2) for the Cu target and up to 6.3 × 1011 ions/pulse (3.5 × 1011 ions/cm2) for the Y target. The characterization of the plasma was performed using a Faraday cup for the electromagnetic properties, and a pepper pot system for the geometric ones. At 60 kV accelerating voltage and 5.5 mA output current the normalized beam emittance resulted in 0.22 π mm mrad for the Cu target, while under the same accelerating voltage, but with 7.4 mA output current, the normalized beam emittance resulted in 0.14 π mm mrad for the Y target.  相似文献   

12.
绝缘材料毛细孔离子导向效应研究在开发“被动型”离子光学元件方面有着积极的意义。本文进行了150 keV O3+离子束与氧化铝毛细孔的相互作用研究,发现在离子沿毛细孔穿越的过程中存在着导向效应。随着毛细孔的不断偏转,入射离子依然能显著地穿过毛细孔;出射离子的角分布谱随毛细孔偏转而偏移相同的角度;毛细孔偏转不同角度时的离子穿透率可很好地被高斯函数拟合。  相似文献   

13.
The performance of a compact micro-PIXE system using a tapered glass capillary for beam focusing was examined with the help of Monte-Carlo simulations. The effective beam spot size was evaluated by an edge-scanning method and a two-dimensional element mapping was successfully demonstrated by using a copper fine-mesh target. The spatially resolved energy-spectrum measurement revealed that even protons scattered at the inner wall of the capillary have kinetic energies enough to induce the X-ray emission in the target. Monte-Carlo simulations showed that the beam-focusing factors of the capillaries used in this study are about 1.7. The uniformity of the beam does not depend so much on the distance from the capillary outlet, but the beam radius was found to be twice larger than its original size even at 1 mm from the capillary outlet, which was consistent with the effective beam spot size measurement.  相似文献   

14.
Polycarbonate membranes containing statistically scattered heavy ion track nanocapillaries have been studied by scanning transmission ion microscopy (STIM) method. The geometry of the samples was characterized by pore diameters of about 172 nm and by 30 μm membrane thickness. The porosity has to be relatively low in order to avoid too many overlapping capillaries. The transparency of the sample is reduced by changing its tilt angle to the beam. While the acceptance angle for transmission of a single capillary is below 0.3°, the STIM results have showed that the angular spread was about 1° full width at half maximum (FWHM). This indicates that the capillaries are not perfectly parallel, i.e. the capillary directions have a finite angular spread.Our results are important for the recent use of these types of insulator membranes in ion guiding studies, and the related potential applications.  相似文献   

15.
16.
Light emission from a silicon dioxide layer enriched with silicon has been studied. Samples used had structures made on thermally oxidized silicon substrate wafers. Excess silicon atoms were introduced into a 250-nm-thick silicon dioxide layer via implantation of 60 keV Si+ ions up to a fluence of 2 × 1017 cm−2. A 15-nm-thick Au layer was used as a top semitransparent electrode. Continuous blue light emission was observed under DC polarization of the structure at 8-12 MV/cm. The blue light emission from the structures was also observed in an ionoluminescence experiment, in which the light emission was caused by irradiation with a H2+ ion beam of energy between 22 and 100 keV. In the case of H2+, on entering the material the ions dissociated into two protons, each carrying on average half of the incident ion energy. The spectra of the emitted light and the dependence of ionoluminescence on proton energy were analyzed and the results were correlated with the concentration profile of implanted silicon atoms.  相似文献   

17.
Molybdenum L-shell X-rays were produced by Xeq+ (q = 25-30) bombardment at low energies from 2.65 to 4.55 keV/amu (350-600 keV). We observed a kinetic energy threshold of Mo L-shell ionization down to 2.65-3.03 keV/amu (350-400 keV). The charge state effect of the incident ions was not observed which shows that the ions were neutralized, reaching an equilibrium charge state and losing their initial charge state memory before production of L-shell vacancies resulted in X-ray production. The experimental ionization cross sections were compared with those from Binary Encounter Approximation theory. Taking into account projectile deflection in the target nuclear Coulomb field, the ionization cross section of Mo L-shell near the kinetic energy threshold was well described.  相似文献   

18.
We studied electrostatic charging on amorphous ice films induced by the impact of 100 keV Ar+ ions at 45° incidence. We derived the positive surface electrostatic potential from the kinetic energy of sputtered molecular ions. Measurements were performed as a function of film thickness, ion flux and accumulated fluence. The main results are (a) films charge up to a saturation value, following an exponential time dependence. (b) The time constant for charging is approximately proportional to the reciprocal of the ion flux. (c) The maximum surface voltage depends on film thickness and ion flux. (d) Charging does not occur for films thinner than the maximum range of projectile. (e) Dielectric breakdown is observed for surface potentials above ∼100 V. We explain the measurements with a model in which charges can drift into the substrate or be trapped temporarily near the ionization range of the projectiles. A charge can be released from the trap by the electric field produced by a nearby charge injected by subsequent projectiles.  相似文献   

19.
Recently, it has been demonstrated that each single-impact of a slow (typically 1-2 keV/u) highly charged ion (HCI) creates truly topographic and non-erasable nanostructures on CaF2 surfaces. To further explore the possibility of nanostructuring various surfaces, using mainly the potential energy stored in such HCIs, projectiles with kinetic energies as low as possible are required. For this purpose a new apparatus, capable of focusing and decelerating an incoming ion beam onto a solid or gaseous target, has been installed at the Heidelberg electron beam ion trap (EBIT). An X-ray detector and a position-sensitive particle detector are utilized to analyze the beam and collision products. First experiments have already succeeded in lowering the kinetic energy of HCIs from 10 keV/q, down to ∼30 eV/q, and in focusing the decelerated beam to spot sizes of less than 1 mm2, while maintaining the kinetic energy spread below ∼20 eV/q.  相似文献   

20.
We made an experimental study on ion guiding through capillaries in uncoated Al2O3 membranes using a variety of ions such as O1+, O3+, and O6+. The incident energy was varied within the range of 30-150 keV. The results were compared with others using coated PET and Al2O3 capillary membranes as well as with the so-called scaling law discovered by Stolterfoht and his co-workers. Good agreement of our results with the scaling law was found. However, our membranes showed extraordinarily strong guiding ability. The reason lies in that our membranes were uncoated. A slower charge drift speed along the insulating capillary wall and a much larger equilibrium charge Q seems to exist in our experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号