首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better appreciate dynamic annealing processes in ion irradiated MgO single crystals of three low-index crystallographic orientations, lattice damage variation with irradiation temperature was investigated. Irradiations were performed with 100 keV Ar ions to a fluence of 1 × 1015 Ar/cm2 in a temperature interval from −150 to 1100 °C. Rutherford backscattering spectroscopy combined with ion channeling was used to analyze lattice damage. Damage recovery with increasing irradiation temperature proceeded via two characteristic stages separated by 200 °C. Strong radiation damage anisotropy was observed at temperatures below 200 °C, with (1 1 0) MgO being the most radiation damage tolerant. Above 200 °C damage recovery was isotropic and almost complete recovery was reached at 1100 °C. We attributed this orientation dependence to a variation of dynamic annealing mechanisms with irradiation temperature.  相似文献   

2.
Structural and compositional modification of InSb(0 0 1) single crystal surfaces induced by oblique incidence 2-5 keV Ar and Xe ion irradiation have been investigated by means of scanning tunneling and atomic force microscopies, and time-of-flight mass spectroscopy of secondary ion emission. In general, ion-induced patterns (networks of nanowires, or ripples) are angle of incidence- and fluence-dependent. Temperature dependences (from 300 to 600 K) of the RMS roughness and of the ripple wavelength have been determined for the samples bombarded with various fluences. Secondary ion emission from an InSb(0 0 1) surface exposed to 4.5 keV Ar+ ions has been investigated with a linear TOF spectrometer working in a static mode. Mass spectra of the sputtered In+, Sb+ and In2+ secondary ions have been measured both for the non-bombarded (0 0 1) surface and for the surface previously exposed to a fluence of 1016 ions/cm2. In+ and In2+ intensities for the irradiated sample are much higher in comparison to the non-bombarded one, whereas Sb+ ions show a reversed tendency. This behavior suggests a significant In-enrichment at the InSb(0 0 1) surface caused by the ion bombardment.  相似文献   

3.
Oxygen deficiency and excess of rutile titania (TiO2) surfaces are important factors for catalytic activities of metal nano-particles on the TiO2 supports. Medium energy ion scattering (MEIS; 80 keV He+) coupled with elastic recoil detection analysis (ERD; 150 keV Ne+) can determine the numbers of bridging O (Obr) vacancies (VO) and excess O atoms adsorbed on the 5-fold Ti rows of TiO2(1 1 0) surfaces. The amounts of VO and adsorbed O were derived by H2O and 18O2 exposure followed by ERD and MEIS analyses, respectively. The present analysis revealed that only about a half of VO are filled and a comparable amount of O atoms are adsorbed on the reduced TiO2(1 1 0) surface after exposure to O2 (1000 L; 1 L = 1 × 10−6 Torr s) at room temperature (RT). We also detected the adsorbed O for the hydroxylated TiO2(1 1 0) after 18O2 exposure at RT. Finally, it is shown that the O adsorbed on the Ti rows reacts with CO probably to form CO2 at RT. Based on the results obtained here, we clarify the reason why only a half of VO are filled by exposing reduced surface to O2 at RT and what is the primary source of subsurface excess electronic charge, which acts as a leading part of the surface electrochemistry and gives the defect state in the band gap seen in the valence band spectra for reduced and hydroxylated TiO2(1 1 0) surfaces.  相似文献   

4.
Three dimensional (3D) distributions (energy E, scattering angle θ and azimuth angle φ) of the fragment protons dissociated from HeH+ during grazing angle scattering from a KCl(0 0 1) are measured using a magnetic spectrometer in order to study the effect of the surface track potential. The distributions of the fragment protons scattered from a SnTe(0 0 1) are also measured as a reference. Although the observed distributions for KCl(0 0 1) and SnTe(0 0 1) are basically the same, there is small differences, especially in the scattering angle distribution. While the fragment protons are scattered at the specular angle from SnTe(0 0 1), the protons are scattered at slightly larger angles from KCl(0 0 1). The observed angular shift is more pronounced for the trailing protons than the leading protons. It is also found that the angular shift increases with decreasing ion energy. The observed angular shift can be qualitatively explained by the surface track potential induced by the partner He ions using a simple model of the surface track potential.  相似文献   

5.
The present study is relevant to the preferential Al sputtering and/or enhancement of the Ni/Al ratio in Ni3Al observed by the scanning transmission electron microscopy fitted with a field emission gun (FEG STEM). Atomic recoil events at the low index (1 0 0), (1 1 0) and (1 1 1) surfaces of Ni3Al through elastic collisions between electrons and atoms are simulated using molecular dynamics (MD) methods. The threshold energy for sputtering, Esp, and adatom creation, Ead, are determined as a function of recoil direction. Based on the MD determined Esp, the sputtering cross-sections for Ni and Al atoms in these surfaces are calculated with the previous proposed model. It is found that the sputtering cross-section for Al atoms is about 7-8 times higher than that for Ni, indicating the preferential sputtering of Al in Ni3Al, in good agreement with experiments. It is also found that the sputtering cross-sections for Ni atoms are almost the same in these three surfaces, suggesting that they are independent of surface orientation. Thus, the sputtering process is almost independent of the surface orientation in Ni3Al, as it is controlled by the sputtering of Ni atoms with a lower sputtering rate.  相似文献   

6.
We have investigated morphological changes of freshly cleaved CaF2(1 1 1) single crystal surfaces before and after ion irradiation. We show that with or without irradiation the surface undergoes serious changes within minutes after the cleavage if the samples are exposed to ambient conditions. This is most likely due to the adsorption of water and could be avoided only if working under clean ultra-high-vacuum conditions. Ion-induced modifications on this surface seem to act as centers for an increased rate of adsorption so that any quantitative numbers obtained by atomic force microscopy in such experiments have to be treated with caution.  相似文献   

7.
Titanium nitride thin films were deposited on Si(1 0 0) substrates by using a low energy (2.3 KJ) Mather-type plasma focus device. The composition of the deposited films was characterized by X-ray diffraction (XRD). The crystallite size has strong dependence on the numbers of focus shots. The crystallinity of TiN thin films is found to increase with increasing the number of focus shots. The effect of different number of focus shots on micro structural changes of thin films was characterized by Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM). SEM results showed net-like structure for film deposited for 15 numbers of shots, which are elongated grains of Si3N4 in amorphous form embedded into TiN crystals. The average surface roughness was calculated from AFM images of the thin films. These results indicated that the average surface roughness increased for films deposited with increased number of focus shots. The least crystallite size and roughness are observed for film deposited with 25 focus shots.  相似文献   

8.
Deposition of TixOy clusters onto the rutile TiO2 (1 1 0) surface has been modelled using empirical potential based molecular dynamics. Deposition energies in the range 10-40 eV have been considered so as to model typical deposition energies of magnetron sputtering. Defects formed as a function of both the deposition energy and deposition species have been studied.The results show that in the majority of cases Ti interstitial atoms are formed, irrespective of whether Ti was contained within the deposited cluster. Furthermore that the majority of these interstitials are formed by displacing a surface Ti atom into the interstitial site. O surface atoms are also relatively common, with Ti and TiO2 surface units often occurring when the deposited cluster contains Ti but becoming less frequent as the deposition energy is increased. Structures that would give rise to the growth of further layers of rutile are not observed and in the majority of the simulations the energy barriers for diffusion of the end-products is high.  相似文献   

9.
The SHI irradiation induced effects on magnetic properties of MgB2 thin films are reported. The films having thickness 300-400 nm, prepared by hybrid physical chemical vapor deposition (HPCVD) were irradiated by 200 MeV Au ion beam (S∼ 23 keV/nm) at the fluence 1 × 1012 ion/cm2. Interestingly, increase in the transition temperature Tc from 35.1 K to 36 K resulted after irradiation. Substantial enhancement of critical current density after irradiation was also observed because of the pinning provided by the defects created due to irradiation. The change in surface morphology due to irradiation is also studied.  相似文献   

10.
We have investigated the scattering of K+ and Cs+ ions from a single crystal Ag(0 0 1) surface and from a Ag-Si(1 0 0) Schottky diode structure. For the K+ ions, incident energies of 25 eV to 1 keV were used to obtain energy-resolved spectra of scattered ions at θi = θf = 45°. These results are compared to the classical trajectory simulation safari and show features indicative of light atom-surface scattering where sequential binary collisions can describe the observed energy loss spectra. Energy-resolved spectra obtained for Cs+ ions at incident energies of 75 eV and 200 eV also show features consistent with binary collisions. However, for this heavy atom-surface scattering system, the dominant trajectory type involves at least two surface atoms, as large angular deflections are not classically allowed for any single scattering event. In addition, a significant deviation from the classical double-collision prediction is observed for incident energies around 100 eV, and molecular dynamics studies are proposed to investigate the role of collective lattice effects. Data are also presented for the scattering of K+ ions from a Schottky diode structure, which is a prototype device for the development of active targets to probe energy loss at a surface.  相似文献   

11.
In0.15Ga0.85N/GaN bilayers irradiated with 2.3 MeV Ne and 5.3 MeV Kr ions at room temperature were studied by high-resolution X-ray diffraction (HRXRD) and micro-Raman scattering. The Ne ion fluences were in the range from 1 × 1012 to 1 × 1015 cm−2, and the Kr ion fluences were in the range from 1 × 1011 to 1 × 1013 cm−2. Results show that the structures of both In0.15Ga0.85N and GaN layers remained almost unchanged for increasing fluences up to 1 × 1013 and 1 × 1012 cm−2 for Ne and Kr ion irradiations, respectively. After irradiation to higher fluences, the GaN layer was divided into several damaged layers with different extents of lattice expansion, while the In0.15Ga0.85N layer exhibited homogenous lattice expansion. The layered structure of GaN and the different responses to irradiation of the GaN and In0.15Ga0.85N layers are discussed.  相似文献   

12.
We report the first investigation of the frequency dependent effect of 50 MeV Li3+ ion irradiation on the series resistance and interface state density determined from capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics in HfO2 based MOS capacitors prepared by rf-sputtering. The samples were irradiated by 50 MeV Li3+ ions at room temperature. The measured capacitance and conductance were corrected for series resistance. The series resistance was estimated at various frequencies from 1 KHz to 1 MHz before and after irradiation. It was observed that the series resistance decreases from 6344.5 to 322 Ω as a function of frequency before irradiation and 8954-134 Ω after irradiation. The interface state density Dit decreases from 1.12 × 1012 eV−1 cm−2 before irradiation to 3.67 × 1011 eV−1 cm−2 after ion irradiation and further decreases with increasing frequency.  相似文献   

13.
We have measured the energy distributions of the secondary ions sputtered from the Si(1 1 1) and Ge(1 1 1) surfaces and investigated the ionization probabilities of sputtered Si+ and Ge+ ions for clarifying their ionization mechanisms. The observed ionization probabilities depend on the velocity of Si+ and Ge+ ions. This velocity dependence can be successfully analyzed by a theoretical expression, which was proposed originally for the metal surfaces. This implies that the ionization mechanism of Si+ and Ge+ ions is the same as ions sputtered from the metal surface, i.e., the resonant electron transfer in the high velocity regime and the thermal excitation process in the low velocity regime. The difference in the ionization probability between Si+ and Ge+ ions is well explained by the difference in the band gap energy.  相似文献   

14.
The results of DFT GGA calculations on oxygen molecules adsorbed upon the (0 0 1) surface of uranium mononitride (UN) are presented and discussed. We demonstrate that O2 molecules oriented parallel to the substrate can dissociate either (i) spontaneously when the molecular center lies above the surface hollow site or atop N ion, (ii) with the activation barrier when a molecule sits atop the surface U ion. This explains fast UN oxidation in air.  相似文献   

15.
We present an experimental and theoretical study on the structural properties of ZnO nanoparticles embedded in silica. The ZnO-SiO2 nanocomposite was prepared by ion implanting a Zn+ beam in a silica slide and by annealing in oxidizing atmosphere at 800 °C. From an experimental point of view, the structural properties of the ZnO-SiO2 nanocomposite were studied by using glancing incidence X-ray diffraction. According to the results, zinc crystalline nanoclusters with an average diameter of 13 nm are in the as-implanted sample. The annealing in oxidizing atmosphere promotes the total oxidation of the Zn nanoclusters and increases their size until to an average of 22 nm. Moreover, the formed ZnO nanocrystals have a preferential (0 0 2) crystallographic orientation. From a theoretical point of view, the preferential orientation of the ZnO nanoparticles can be explained satisfactory by the minimization of the strain energy of the nanoparticles placed in proximity of the surface of the matrix.  相似文献   

16.
Using molecular-dynamics simulation, we study the sputtering of a Pt(1 1 1) surface under oblique and glancing incidence 5 keV Ar ions. For incidence angles larger than a critical angle ?c, the projectile is reflected off the surface and the sputter yield is zero. We discuss the azimuth dependence of the critical angle ?c with the help of the surface corrugation felt by the impinging ion. If a step exists on the surface, sputtering occurs also for glancing incidence ?>?c. We demonstrate that for realistic step densities, the total sputtering of a stepped surface may be sizable even at glancing incidence.  相似文献   

17.
The clean Cu(1 0 0) surface and Pt/Cu(1 0 0) surface by Pt deposition at room temperature have been investigated using the computer simulation of coaxial impact-collision ion scattering spectroscopy (CAICISS). The computer simulations employing the ACOCT program code, which treats the atomic collisions three-dimensionally and is based on the binary collision approximation (BCA), were carried out for the case of 3 keV He+ ions incident along the 〈1 0 0〉 and 〈1 1 0〉 azimuths of the clean Cu(1 0 0) and Pt/Cu(1 0 0) surfaces. The comparisons between ACOCT results and experimental CAICISS data show that the experimental results on the clean Cu(1 0 0) surface are relatively well reproduced by the ACOCT simulations including the inward relaxation of 1.2% in the first interlayer spacing and the outward relaxation of 1.6% in the second interlayer spacing, and that the ACOCT simulations for the Pt deposition with coverages of 2.35 ML and 2.75 ML on the Cu(1 0 0) surface appear the concentrations of 0.24 ML of Pt sitting 2.3 Å and 0.25 ML of Pt sitting 2.5 Å above the outermost atomic layer, respectively.  相似文献   

18.
Vacuum plasma etching of 1 wt% La2O3 doped tungsten alloy surfaces were carried out to refine the surface morphology for enhancing its bonding characteristics with copper for fusion reactor components. Three different gas compositions containing argon with zero, 14.3 and 25 vol% hydrogen were used to carry out the plasma etching from 30 to 120 s on the given samples. Mitutoyo surface roughness (Ra) measurement, FORM TALYSURF and scanning electron microscopy (SEM) were employed to measure the changes in the surface roughness. Plasma etching with 14.3 vol% hydrogen mixture was found to be the best in micro-roughening the alloy surface. The maximum increase of 44% in Ra value was obtained with this gas mixture, when etched for 90 s.  相似文献   

19.
ThxU1−xO2+y binary compositions occur in nature, uranothorianite, and as a mixed oxide nuclear fuel. As a nuclear fuel, important properties, such as the melting point, thermal conductivity, and the thermal expansion coefficient change as a function of composition. Additionally, for direct disposal of ThxU1−xO2, the chemical durability changes as a function of composition, with the dissolution rate decreasing with increasing thoria content. UO2 and ThO2 have the same isometric structure, and the ionic radii of 8-fold coordinated U4+ and Th4+ are similar (1.14 nm and 1.19 nm, respectively). Thus, this binary is expected to form a complete solid solution. However, atomic-scale measurements or simulations of cation ordering and the associated thermodynamic properties of the ThxU1−xO2 system have yet to be determined. A combination of density-functional theory, Monte-Carlo methods, and thermodynamic integration are used to calculate thermodynamic properties of the ThxU1−xO2 binary (ΔHmix, ΔGmix, ΔSmix, phase diagram). The Gibbs free energy of mixing (ΔGmix) shows a miscibility gap at equilibration temperatures below 1000 K (e.g., Eexsoln = 0.13 kJ/(mol cations) at 750 K). Such a miscibility gap may indicate possible exsolution (i.e., phase separation upon cooling). A unique approach to evaluate the likelihood and kinetics of forming interfaces between U-rich and Th-rich has been chosen that compares the energy gain of forming separate phases with estimated energy losses of forming necessary interfaces. The result of such an approach is that the thermodynamic gain of phase separation does not overcome the increase in interface energy between exsolution lamellae for thin exsolution lamellae (10 Å). Lamella formation becomes energetically favorable with a reduction of the interface area and, thus, an increase in lamella thickness to >45 Å. However, this increase in lamellae thickness may be diffusion limited. Monte-Carlo simulations converge to an exsolved structure [lamellae || ] only for very low equilibration temperatures (below room temperature). In addition to the weak tendency to exsolve, there is an ordered arrangement of Th and U in the solid solution [alternating U and Th layers || {1 0 0}] that is energetically favored for the homogeneously mixed 50% Th configurations. Still, this tendency to order is so weak that ordering is seldom reached due to kinetic hindrances. The configurational entropy of mixing (ΔSmix) is approximately equal to the point entropy at all temperatures, indicating that the system is not ordered.  相似文献   

20.
Several targets that consist of atomic species X (X = N, O, Cl, S, Br) adsorbed at hollow sites on the Cu(1 0 0) surface have been examined with low-fluence secondary ion mass spectrometry (SIMS). The positive and negative secondary ion (SI) abundance distributions, which show a range of characteristics, have been discussed with the aid of thermochemical data derived from ab initio calculations. In positive SIMS, CuX+ is never observed, while the only heteronuclear (mixed-atom) SI that is observed for all five systems is Cu2X+. In negative SIMS, the dominant heteronuclear species for all systems is , except for N/Cu(1 0 0), which produces no , ions. Cu emission is observed only for O/Cu(1 0 0). By analogy with results from laser ablation studies of O/Cu targets, it is conjectured that Cu is a daughter product of the gas-phase dissociation of polyatomic Cu-O anion clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号