首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
It has been reported that elongated Au nanoparticles oriented parallel to one another can be synthesized in SiO2 by ion irradiation. Our aim was to elucidate the mechanism of this elongation. We prepared Au and Ag nanoparticles with a diameter of 20 nm in an SiO2 matrix. It was found that Au nanoparticles showed greater elongated with a higher flux of ion beam and with thicker SiO2 films. In contrast, Ag nanoparticles split into two or more shorter nanorods aligned end to end in the direction parallel to the ion beam. These experimental results are discussed in the framework of a thermal spike model of Au and Ag nanorods embedded in SiO2. The lattice temperature exceeds the melting temperatures of SiO2, Au and Ag for 100 ns after one 110 MeV Br10+ ion has passed through the middle of an Au or Ag nanorod.  相似文献   

2.
Swift heavy ions have unique feature of creating ion tracks in insulators of dimension from a few nm to about 10 nm. This particular feature of the swift heavy ions is used to engineer the size and shape of the nanoparticles embedded in silica matrix. On the basis of several experiments, it is evidenced that the embedded nanoparticles either grow in size or reduce in size, if they are smaller than or comparable to the ion track size. The shape transformation from spherical to elongated along the beam direction occurs, when the nanoparticle size is larger than the ion track diameter in silica. The reduction, growth and elongation of Au nanoparticles embedded in silica matrix under swift heavy ion irradiation have been discussed in the frame work of thermal spike model.  相似文献   

3.
Changes in the shape and size of Co, Pt and Au nanoparticles induced by swift heavy-ion irradiation (SHII) have been characterized using a combination of transmission electron microscopy, small-angle X-ray scattering and X-ray absorption near-edge structure. Elemental nanoparticles of diameters 2-15 nm were first formed in amorphous SiO2 by ion implantation and thermal annealing and then irradiated at room temperature with 27-185 MeV Au ions as a function of fluence. Spherical nanoparticles below a minimum diameter (4-7 nm) remained spherical under SHII but progressively decreased in size as a result of dissolution into the SiO2 matrix. Spherical nanoparticles above the minimum diameter threshold were transformed to elongated rods aligned with the ion beamdirection. The nanorod width saturated at an electronic energy deposition dependent value, progressively increasing from 4-6 to 7-10 nm (at 5-18 keV/nm, respectively) while the nanorod length exhibited a broad distribution consistent with that of the unirradiated spherical nanoparticles. The threshold diameter for spherical nanoparticle elongation was comparable to the saturation value of nanorod width. We correlate this saturation value with the diameter of the molten track induced in amorphous SiO2 by SHII. In summary, changes in nanoparticle shape and size are governed to a large extent by the ion irradiation parameters.  相似文献   

4.
Irradiation-induced burrowing and ion-induced shaping effects of Au nanoparticles are investigated. Hexagonally arranged Au nanoparticles prepared by micellar technique with diameter ~10 nm and inter-particle distance of about 80 nm were sequentially irradiated with 200 keV Ar+ ions to fluences of 5×1015 ions/cm2. Irradiation with Argon ions causes sinking of the Au nanoparticles into the subjacent SiO2 layer due to capillary driving forces related to specific wetting conditions while the spherical shape is conserved. Subsequent irradiation with 54 MeV Ag8+ swift heavy ions of these spherical Au nanoparticles confined within a silica matrix shapes them into prolate nanorods and nanowires whose principal axes are aligned along the beam direction. Above a threshold fluence two deformation regimes have been observed. For relatively low fluences Au nanoparticles elongate into nanorods depending on their volume. For high fluences, the formation of nanowires is observed provided that the inter-particle distance is short enough to allow for an efficient mass transport through the silica matrix.  相似文献   

5.
MeV Au irradiation leads to a shape change of polystyrene (PS) and SiO2 particles from spherical to ellipsoidal, with an aspect ratio that can be precisely controlled by the ion fluence. Sub-micrometer PS and SiO2 particles were deposited on copper substrates and irradiated with Au ions at 230 K, using an ion energy and fluence ranging from 2 to 10 MeV and 1 × 1014 ions/cm2 to 1 × 1015 ions/cm2. The mechanisms of anisotropic deformation of PS and SiO2 particles are different because of their distinct physical and chemical properties. At the start of irradiation, the volume of PS particles decrease, then the aspect ratio increases with fluence, whereas for SiO2 particles the volume remains constant.  相似文献   

6.
Magnetic nanoparticles embedded in polymer matrices have excellent potential for electromagnetic device applications like electromagnetic interference suppression, etc. The NiO nanoparticles were synthesized by simple method. These nanoparticles were dispersed in PMMA matrix and films were prepared by casting method with varying concentrations of nickel oxide nanoparticles. These films were irradiated with 50 MeV Li+3 ions at a fluence of 5 × 1012 ions/cm2. AC electrical properties of pristine and irradiated samples were studied in wide frequency range. Dependence of dielectric properties on frequency, ion beam fluence and filler concentration was studied. The results reveal the enhancement in dielectric properties after doping nanoparticles and also upon irradiation, which is also corroborated with field-cooled-zero-field-cooled (FC-ZFC) susceptibility measurement in which magnetization is increased upon irradiation. The Fourier transform infrared (FTIR) spectroscopy analysis revealed the change in the intensity of functional groups after irradiation. Average surface roughness observed to change with filler concentration and also with the irradiation fluence as obtained from AFM analysis.  相似文献   

7.
Germanium nanoparticles embedded in SiO2 matrix were prepared by atom beam sputtering on a p-type Si substrate. The as-deposited films were annealed at temperatures of 973 and 1073 K under Ar + H2 atmosphere. The as-deposited and annealed films were characterized by Raman, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Rutherford backscattering spectrometry was used to quantify the concentration of Ge in the SiO2 matrix of the composite thin films. The formation of Ge nanoparticles were observed from the enhanced intensity of the Ge mode in the Raman spectra as a function of annealing, the appearance of Ge(3 1 1) peaks in the X-ray diffraction data and the Ge vibrational mode in the FTIR spectra. We have irradiated the films using 100 MeV Au8+ ions with a fluence of 1 × 1013 ions/cm2 and subsequently studied them by Raman and FTIR. The results are compared with the ones obtained by annealing.  相似文献   

8.
In order to evaluate if the fuel elements and their components (matrix material and coated fuel particles) can meet the design requirements of 10 MW high temperature gas-cooled reactor (HTR-10), an irradiation testing with four spherical fuel elements, 60 matrix material specimens of 5 mm × 5 mm × 40 mm and 13,500 coated fuel particles was performed in Russian IVV-2M reactor from July 2000 to February 2003. The irradiation temperature was 1000 °C. The fast neutron fluence of matrix material specimens reached 1.3 × 1021 cm−2 (E > 0.1 MeV). Post-irradiation examination contained the visual inspection, dimension measurement and determining the density, porosity, specific electrical resistance and bending strength. The irradiation results are given in this paper, and show that the matrix material for spherical HTR-10 fuel elements made from the domestic raw materials and fabricated by the quasi-isostatic room-temperature moulding process is suitable as a structural material for spherical HTR fuel elements.  相似文献   

9.
In this report, we present preliminary ion irradiation experiments performed using a new medium energy (up to ∼20 MeV), high temperature ion irradiation capability that we developed at Los Alamos National Laboratory. Details of ion fluence and irradiation temperature (including ion beam heating) control, measurements procedure and accuracy are described. In particular, we investigated irradiation-induced atomic intermixing in a layered structure composed of MgO and HfO2 thin films deposited on a sapphire substrate. This multi-layered structure represents a dispersion nuclear fuel form surrogate. To simulate a nuclear reactor environment, we performed ion irradiation using 10 MeV Au ions to a fluence of 5 × 1015 cm−2 at a substrate temperature of 1000 °C. The degree of atomic intermixing was assessed from depth profiles of Mg, Hf, and Al atoms, which were obtained using Rutherford backscattering spectrometry. We found considerable interlayer mixing for sample regions in close proximity to the sapphire substrate.  相似文献   

10.
The effect of swift heavy ion (72.5 MeV 58Ni6+) irradiation on Au/n-GaAs Schottky barrier characteristics is studied using in situ current-voltage measurements. Diode parameters are found to vary as a function of ion irradiation fluence. The Schottky barrier height (SBH) is found to be 0.55(±0.01) eV for the as deposited diode, which decreases with ion irradiation fluence. The SBH decreases to a value of 0.49(±0.01) eV at the highest ion irradiation fluence of 5 × 1013 ions cm−2. The ideality factor is found to be 2.48 for unirradiated diode, and it increases with irradiation to a value of 4.63 at the highest fluence. The modification in Schottky barrier characteristics is discussed considering the energy loss mechanism of swift heavy ion at the metal-semiconductor interface.  相似文献   

11.
Present investigation reports the effect of 100 MeV oxygen beam on the magnetic properties of zinc ferrite nanoparticles. The nanoparticles for this study were synthesized by using the nitrates of zinc and iron in the matrix of citric acid and by sintering the precursor at 500 and 1000 °C. Both these samples were irradiated by 100 MeV oxygen beam with two different fluence 1 × 1013 and 5 × 1013 ions/cm2. Besides the presence of cubic spinel phase, ZnO phase appears after the irradiation in both the samples. A decrease in average particle size was observed in the irradiated samples as estimated by X-ray diffraction pattern. The magnetization versus applied field curves show the decrease in magnetization with the fluence of the beam, which is attributed to the ZnO phase. The thermal magnetization curve for the sample ZF500 shows almost constant value of blocking temperature after irradiation whereas for ZF1000 it increases from 18 K to 32 K at a fluence of 5 × 1013 ions/cm2.  相似文献   

12.
Room temperature ion irradiation damage studies were performed on a ceramic composite intended to emulate a dispersion nuclear fuel. The composite is composed of 90-mole% MgO and 10-mole% HfO2. The as-synthesized composite was found to consist of Mg2Hf5O12 (and some residual HfO2) particles embedded in an MgO matrix. X-ray diffraction revealed that nearly all of the initial HfO2 reacted with some MgO to form Mg2Hf5O12. Ion irradiations were performed using 10 MeV Au3+ ions at room temperature over a fluence range of 5 × 1016-5 × 1020 Au/m2. Irradiated samples were characterized using both grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM), the latter using both selected-area electron diffraction (SAED) and micro-diffraction (μD) on samples prepared in cross-sectional geometry. Both GIXRD and TEM electron diffraction measurements on a specimen irradiated to a fluence of 5 × 1020 Au/cm2, revealed that the initial rhombohedral Mg2Hf5O12 phase was transformed into a cubic-Mg2Hf5O12 phase. Finally, it is important to note that at the highest ion fluence used in this investigation (5 × 1020 Au/m2), both the MgO matrix and the Mg2Hf5O12 second phase remained crystalline.  相似文献   

13.
We report on the secondary electron yields of Au and oxidized aluminum (Al2O3) by impact of heavy ions with energies ranging from 7.92 MeV/amu (12C6) to 2.54 MeV/amu (107Ag47). The obtained results, the first in this energy range using medium-heavy ions, extend the validity of proposed scaling laws obtained with lighter ions. Measurements have been performed using the SIRAD irradiation facility at the 15 MV Tandem of the INFN Laboratory of Legnaro (Italy), to evaluate the performance of ion electron emission microscopy at SIRAD.  相似文献   

14.
The SHI irradiation induced effects on magnetic properties of MgB2 thin films are reported. The films having thickness 300-400 nm, prepared by hybrid physical chemical vapor deposition (HPCVD) were irradiated by 200 MeV Au ion beam (S∼ 23 keV/nm) at the fluence 1 × 1012 ion/cm2. Interestingly, increase in the transition temperature Tc from 35.1 K to 36 K resulted after irradiation. Substantial enhancement of critical current density after irradiation was also observed because of the pinning provided by the defects created due to irradiation. The change in surface morphology due to irradiation is also studied.  相似文献   

15.
Modifications of the C70 molecule (fullerene) under swift heavy ion irradiation are investigated. C70 thin films were irradiated with 120 MeV Au ions at fluences from 1 × 1012 to 3 × 1013 ions/cm2. The energetic ion impacts lead to the destruction of the C70 molecule. To investigate the stability of C70 fullerene, the damage cross-section and radius of the damaged cylindrical zones are evaluated by fitting the evanescence of C70 vibration modes recorded by Raman spectroscopy. Conductivity measurements together with Raman and optical absorption studies revealed that an irradiation fluence of 3 × 1013 ions/cm2 results in complete amorphization of the carbon structure of the fullerene molecules.  相似文献   

16.
The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO nanocrystallites deposited into porous silicon (PS) templates by the sol-gel process was studied. The ZnO/PS nanocomposites were irradiated using 120 MeV Au ions at different fluences varying from 1 × 1012 to 1 × 1013 ions/cm2. The intensity of the X-ray diffraction peaks is suppressed at the high fluence, without evolution of any new peak. The PL emission from PS around 700 nm is found to decrease with increase in ion fluence, while the PL emission from deep level defects of ZnO nanocrystallites is increased with ion fluence. At the highest fluence, the observation of drastic increase in PL emission due to donor/acceptor defects in the region 400-600 nm and suppressions of XRD peaks could be attributed to the defects induced structural modifications of ZnO nanocrystallites.  相似文献   

17.
Effects of 150 MeV Ni11+ swift heavy ion (SHI) irradiation on copper ferrite nanoparticles have been studied at the fluences of 1 × 1011, 1 × 1012, 1 × 1013, 1 × 1014 and 5 × 1014 ions/cm2. The XRD pattern shows the irradiation fluence dependant preferential orientation. Scanning electron microscope analysis displays fine blocks of material for pristine while partial agglomeration on irradiation. Notably, a large number of holes are present at the fluence of 5 × 1014 ions/cm2. The magnetization measurements performed in these samples exposes that the coercivity and remanence magnetization value increases due to the magnetocrystalline anisotropy up to the fluence of 1 × 1013 ions/cm2. At 1 × 1014 ions/cm2 fluence, the induced thermal energy overcomes the magnetocrystalline anisotropy constant and causes a decrease in coercivity and remanence values. The saturation magnetization decreases up to the fluence of 1 × 1013 ions/cm2 and then it increases for further irradiation. The change of crystalline orientation observed from XRD, the creation of holes from SEM and the change in magnetic properties are discussed on the basis of electro-phonon coupling and it invokes the thermal spike theory.  相似文献   

18.
CdTe polycrystalline thin films possessing hexagonal phase regions are obtained by spray deposition in presence of a high electric field. Thin film samples are irradiated with 100 MeV Ag ions using Pelletron accelerator to study the swift heavy ion induced effects. The ion irradiation results in the transformation of the metastable hexagonal regions in the films to stable cubic phase due to the dense electronic excitations induced by beam irradiation. The phase transformation is seen from the X-ray diffraction patterns. The band gap of the CdTe film changes marginally due to ion irradiation induced phase transformation. The value changes from 1.47 eV for the as deposited sample to 1.44 eV for the sample irradiated at the fluence 1×1013 ions/cm2. The AFM images show a gradual change in the shape of the particles from rod shape to nearly spherical ones after irradiation.  相似文献   

19.
Crystal and interfacial structures of oxide nanoparticles and radiation damage in 16Cr-4.5Al-0.3Ti-2W-0.37 Y2O3 ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y4Al2O9 (YAM) oxide compound. Orientation relationships between the oxide and the matrix are found to be dependent on the particle size. Large particles (>20 nm) tend to be incoherent and have a spherical shape, whereas small particles (<10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles and multiple crystalline domains formed within a nanoparticle lead us to propose a three-stage mechanism to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels. Effects of nanoparticle size and density on cavity formation induced by (Fe8+ + He+) dual-beam irradiation are briefly addressed.  相似文献   

20.
Luminescence studies of CaS:Bi nanocrystalline phosphors synthesized by wet chemical co-precipitation method and irradiated with swift heavy ions (i.e. O7+-ion with 100 MeV and Ag15+-ion with 200 MeV) have been carried out. The samples have been irradiated at different ion fluences in the range 1 × 1012-1 × 1013 ions/cm2. The average grain size of the samples before irradiation was estimated as 35 nm using line broadening of XRD (X-ray diffraction) peaks and TEM (transmission electron microscope) studies. Our results suggest a good structural stability of CaS:Bi against swift heavy ion irradiation. The blue emission band of CaS:Bi3+ nanophosphor at 401 nm is from the transition 3P→ 1S0 of the Bi3+. We have observed a decrease in lattice constant (a) and increase of optical energy band gap after ion irradiation. We presume this change due to grain fragmentation by dense electronic excitation induced by swift heavy ion. We have studied the optical and luminescent behavior of the samples by changing the ion energy and also by changing dopant concentration from 0.01 mol% to 0.10 mol%. It has been examined that ion irradiation enhanced the luminescence of the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号