首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
为了解决垃圾渗滤液在无外加碳源的条件下难以实现高效生物脱氮的问题,采用中试规模的A/O-MBR反应器,通过实现短程硝化反硝化去除垃圾渗滤液中的高浓度有机物和氮化物,并考察反应器系统对水质变化的适应能力以及不同进水碳氮比时的去除效果.实验结果表明:在进水氨氮质量浓度为1 500 mg/L、碳氮比为2∶1、水力停留时间(HRT)为4.21 d的条件下,COD和TN去除率均达到80%以上,说明系统实现了低碳氮比垃圾渗滤液高效生物脱氮.  相似文献   

2.
采用升流式厌氧污泥床-缺氧/好氧(UASB-A/O)生化系统处理城市垃圾渗滤液,考察系统除有机物脱氮效能及低温条件下A/O的硝化特性.623 d试验结果表明:通过UASB反应器内厌氧菌的产甲烷作用和异养菌的反硝化作用,耦合A/O系统内的缺氧反硝化和好氧生物降解机制,实现了渗滤液内有机物和氮同步深度去除.在进水渗滤液内化学需氧量质量浓度ρ(COD)为1 237~13 813 mg/L,平均值为(5 640±2 567)mg/L,UASB-A/O系统出水ρ(COD)为280~1 257 mg/L,平均值为(546±285)mg/L.在进水渗滤液内氨氮质量浓度ρ(NH_4~+-N)为148~2414 mg/L,平均值为(1 381±634)mg/L,UASB-A/O系统出水ρ(NH_4~+-N)均低于50 mg/L.整个实验过程中,A/O反应器克服了季节性温度变化的不利影响,始终维持了高效的生物硝化和反硝化.即使在冬季低于15℃温度条件下,A/O系统内的生物脱氮效率仍然维持在90%以上.  相似文献   

3.
采用"两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)工艺"对城市生活晚期垃圾渗滤液进行了深度处理.运行模式如下:首先在一级UASB(UASB1)中反硝化,UASBI出水中的亚硝态氮和硝态氮利用残余COD在二级UASB(UASB2)中被进一步去除,在A/O反应器中利用残余COD进行反硝化以及将NH4+-N硝化,在SBR中去除硝化产生的亚硝态氮、硝态氮.试验中首先采用原渗滤液进入处理系统(20d),然后采用原渗滤液与生活污水1∶1混合进入系统实现和维持稳定的短程硝化(60d),最后采用原渗滤液与A/O反应器出水1:1混合进入系统实现和维持稳定的短程硝化(60d).140d的试验结果表明:原渗滤液的总氮浓度为2 300 mg·L-1,氨氮浓度在2 000mg·L-1左右时,通过将原渗滤液与生活污水或A/O反应器出水1:1混合,可以在A/O反应器中实现稳定的短程硝化,其中亚硝态氮积累率为70%~88%.后续的SBR工艺,可彻底去除产生的亚硝态氮和硝态氮.最终出水的氨氮浓度不到2 mg·L-1,总氮浓度为18~20mg·L-1,系统氨氮和总氮去除率分别为99.7%和98%.  相似文献   

4.
两级UASB-SBR工艺处理垃圾渗滤液启动研究   总被引:1,自引:0,他引:1  
为了实现生活垃圾渗滤液的高效脱氮,采用两级UASB-SBR组和工艺处理实际垃圾渗滤液进行试验研究.本系统启动阶段共经历75d,通过对原渗滤液不同比例的稀释,分4个阶段逐步提高进水浓度,ρCOD从3.5g/L提高到12g/L,ρ(NH4+-N)从0.2g/L提高到1.1g/L,启动成功后实现了有机物及氨氮的深度去除.SBR采用硝化出水回流的运行方式,对原水既有一定的稀释作用,又可使富含NOx-N的硝化液借助原水中丰富的有机碳源在缺氧UASB内进行反硝化,实现生物脱氮及降解有机物的双重目的,最终ηCOD稳定在95%以上,η(NH4+-N)可达99%左右,ηTN达到85%以上,出水剩余ρTN低于15g/L.  相似文献   

5.
针对晚期垃圾渗滤液实现深度除碳脱氮,采用上流式厌氧污泥床(upflow anaerobic sludge blanket,UASB)-缺氧/好氧反应器(anoxic/aerobic reactor,A/O)-厌氧氨氧化反应器(anaerobic sequencing batch reactor,ASBR)组合工艺,以短程硝化-厌氧氨氧化耦合反应为依托,通过UASB实现有机物的大部分降解,在A/O中实现短程硝化,在ASBR中通过厌氧氨氧化深度脱氮.研究结果表明:当进水ρ(CODcr)、ρ(NH_4~+-N)和ρ(TN)分别为2 220 mg/L、1 400~1 450 mg/L和1 450~1 500 mg/L;最终出水分别为98、7、25 mg/L,实现了分别为95.6%、98.3%和99.5%的高去除率.故该工艺无须投加任何外碳源,最终实现化学需氧量(chemical oxygen demand,COD)、氨氮(NH_4~+-N)和总氮(total nitrogen,TN)的高效、深度去除.  相似文献   

6.
为了研究厌氧-好氧工艺处理垃圾渗滤液的脱氮性能,采用ASBR联合脉冲进水SBR(脉冲SBR)处理高氨氮实际垃圾渗滤液。ASBR的水力停留时间为2d;中间水箱调节脉冲SBR的进水C/N(3~5)和NH4+-N浓度;脉冲SBR采用3次等量进水模式,运行周期分为4个缺氧段和3个好氧段,不投加外碳源,缺氧4利用污泥内碳源进行反硝化。结果表明,串联运行时期(157d)系统获得了高效的脱氮性能。ASBR进水COD为7 338~10 445mg.L-1,去除率在83%以上;脉冲SBR进水NH4+-N浓度分4个阶段逐步提高至912.0±41.7mg.L-1,总氮(TN)去除率在90%以上,出水总氮小于40mg.L-1;系统COD和总氮去除率分别在87%和97%以上。单个缺氧4进程内的内源反硝化速率(DNR)会由快变慢,而其平均理论内源反硝化速率(TDNRm)达到了1.531mgN.h-1.gMLVSS-1。在不使用物化预处理和不投加外碳源的情况下实现了对渗滤液的深度脱氮。  相似文献   

7.
在实验室条件下研究利用传统的生物处理工艺UASB(厌氧)、SBR(好氧)与陈腐垃圾生物反应床(ARF)、蚯蚓生物滤床(EF)组合处理上海老港填埋场调节池渗滤液.实验结果表明组合工艺中UASB单元去除容易降解的有机物,COD的去除率控制在35%,为下一步的短程硝化反硝化提供必要的碳源;SBR单元则通过低氧曝气控制DO在0.8~1.2mg/L实现短程硝化反硝化去除50%以上的TN;ARF和EF是作为后处理工艺进一步去除剩余的COD和TN(分别达到26%和73%),其中在ARF的进水中投加甲醇作为外加碳源(C/N为1)实现反硝化去除积累的NO2-N.组合工艺出水BOD和NH+4-N均优于二级排放标准,但出水COD超过1000mg/L,需要增加物化工艺去除难降解的腐殖质类物质.  相似文献   

8.
在实验室条件下研究利用传统的生物处理工艺UASB(厌氧)、SBR(好氧)与陈腐垃圾生物反应床(ARF)、蚯蚓生物滤床(EF)组合处理上海老港填埋场调节池渗滤液.实验结果表明:组合工艺中UASB单元去除容易降解的有机物,COD的去除率控制在35%,为下一步的短程硝化反硝化提供必要的碳源;SBR单元则通过低氧曝气控制DO在0.8~1.2mg/L实现短程硝化反硝化去除50%以上的TN;ARF和EF是作为后处理工艺进一步去除剩余的COD和TN(分别达到26%和73%),其中在ARF的进水中投加甲醇作为外加碳源(C/N为1)实现反硝化去除积累的NO2-N.组合工艺出水BOD和NH+4-N均优于二级排放标准,但出水COD超过1000mg/L,需要增加物化工艺去除难降解的腐殖质类物质.  相似文献   

9.
垃圾渗滤液是一种成分复杂的高浓度有机废水,若不加处理而直接排入环境,会造成严重的环境污染,研发高效可行的渗滤液处理工艺具有重要意义.通过建立"缺氧(A)/好氧(O)/膜生物反应器(MBR)+反渗透(RO)"中试设备,现场处理实际垃圾渗滤液,探讨进水浓度和温度条件对垃圾渗滤液中污染物去除影响,考察"A/O/MBR+RO"工艺处理垃圾渗滤液的工艺可行性.结果表明:该工艺在冬季时(5~15°C)对COD、NH_3-N、TN去除率仍可达60%、63%和47%左右.冬季低温时,MBR出水中含有一定的NO_2-N,而此时COD满足不了完全反硝化需求,初步说明可能存在一定的短程硝化反硝化.对MBR出水进行RO深度处理后,出水中NH_3-N、COD和TN等水质指标均达到《生活垃圾填埋场污染控制标准》(GB16889-2008)要求.  相似文献   

10.
A/O脱氮工艺影响因素及其控制策略的研究   总被引:13,自引:0,他引:13  
为有效提高A/O工艺脱氮效率,以淀粉废水为研究对象,系统考察了DO、硝化液回流量、污泥回流量、SRT、进水COD与TN质量质量浓度比和HRT等因素对脱氮效率的影响,并建立了相应的控制策略,如以出水氨氮质量浓度来控制好氧区DO值,以缺氧区硝酸氮质量浓度来控制内循环回流量,以进水COD与TN质量质量浓度比或出水总氮质量浓度来控制外碳源投量,最后根据上述分析建立了A/O工艺硝化与反硝化反应专家控制系统。  相似文献   

11.
垃圾渗滤液为难处理的高浓度有机废水,上流式厌氧污泥床(UASB)工艺被证明是处理该类废水的有效手段。为此,以一系列不同渗滤液浓度的模拟废水作为进水,对逐步启动UASB反应器进行了动态小试,得出了UASB工艺处理垃圾渗滤液的较快速启动方法。结果显示:接种普通厌氧污泥,逐步增加反应器负荷,经过95d的运行,完成启动。此时进水COD质量浓度为5250mg/L,COD去除率为85%,容积COD负荷达8.4kg/(m^3·d),容积产气率为5.0m^3/(m^3·d),反应器底部形成少量颗粒污泥。  相似文献   

12.
盐度是浒苔渗沥液和生活污水联合处理的主要限制因素.试验中采用SBR生物处理工艺对浒苔渗沥液和生活污水进行联合处理,并考察了浒苔渗沥液与生活污水混合比例对处理效果的影响.随着浒苔渗沥液投加比例的增加,盐度含量递增,结果表明:①当盐度低于3.2 g/L时,COD处理效果未受显著影响,当盐度高于3.2 g/L时,COD处理效果影响较大;②在高盐度情况下,氨氮处理效果未受显著影响,氨氮去除率维持在90%以上,但从出水硝酸盐氮的含量来看,盐度对反硝化过程存在抑制作用;③磷酸盐处理效果受盐度影响较为显著,磷酸盐去除率持续降低,由85%降至5%;④盐度对活性污泥抑制较为明显,活性污泥浓度由初始的4.1 g/L降至末期的1.9 g/L,污泥形态和结构发生改变.  相似文献   

13.
采用IC-ALR的新型工艺处理含有大量蛋白质、碳水化合物的去油脂泔水。结果表明,在适应期采用快速提升负荷的方式有利于提高污泥的活性,加速污泥颗粒化;稳定运行期,当进水有机浓度达到22.4 g/L时,COD去除率高达91.7%,出水中9.2~10.1 mmol/L的VFA含量不会影响IC的稳定运行。利用ALR处理IC厌氧消化液,当进水COD和NH3-N浓度分别达到1 850和420 mg/L时,ALR反应器能够去除进水中75%的COD和91%的氨氮,出水COD和NH3-N浓度分别为420和40 mg/L。  相似文献   

14.
针对我国南方低碳氮比生活污水,开展以BAF为硝化单元的A2N工艺小试研究,针对超越污泥携带NH4+导致出水超标及二沉池出水SS偏高时TP超标问题,进一步研究增加二级BAF单元的处理效果,形成A2N/BAF工艺.结果表明:A2N段对COD、NH4+-N、TP平均去除率分别为82.0%、70.9%、90.0%;当进水NH4+-N超过40.0 mg/L时,二沉池出水NH4+-N超过10.0 mg/L;二级BAF单元能够硝化二沉池出水NH4+-N及截留SS,最终出水COD、TP、NH4+-N、NO3--N、SS平均质量浓度分别为35、0.35、1.06、8.01、7 mg/L,稳定达到一级A标准.  相似文献   

15.
目的通过用混凝和化学沉淀法联合对垃圾渗滤液进行的预处理来确定出最佳工艺条件.方法通过投加混凝剂和絮凝剂对垃圾渗滤液进行混凝沉淀实验,将处理后的渗滤液再投加沉淀剂,分别以CODCr和氨氮为考察指标,根据单因素和正交实验确定实验条件.结果实验表明,混凝和化学沉淀法联合处理对垃圾渗滤液的CODCr和氨氮具有良好的去除效果,实验条件为:混凝剂(PAC)的投量为1 000 mg/L,絮凝剂(PAM)的投量为3.5 mg/L,在pH值为5.5左右进行混凝,然后对经过沉淀的上清液调节其pH值为8.5,按Mg2+、NH4+和PO43+物质的量之比为1:1:1投加沉淀剂,静置沉淀.结论对垃圾渗滤液的CODCr和氨氮的去除率分别达到52.5%和81%以上.经处理后的废水BOD5/COD值为0.63,氨氮含量为76 mg/L,降低后续生物处理负荷.  相似文献   

16.
亚硝酸型硝化在生物陶粒反应器中的实现   总被引:2,自引:0,他引:2  
为确定低氨氮污水处理过程中的亚硝酸型硝化的特性,采用生物陶粒反应器对其亚硝化效果和稳定性进行研究.试验结果表明,在水温20~25℃,水力负荷0.6 m3/(m2.h),气水比(3~5)∶1,进水COD负荷106~316 mg/L,氨氮负荷42.78~73.62 mg/L的条件下,反应器对氨氮的平均去除率可达到81.32%,且亚硝酸氮积累率基本稳定地保持在91%~99%.结合反应器中氮元素沿程变化分析及反应器内生物膜中微生物的计数结果表明,通过控制低溶解氧,实现了在常温条件下稳定的亚硝酸盐积累.  相似文献   

17.
在序批式反应器(sequencing batch reactor,SBR)内以蔗糖为底物培养好氧颗粒污泥(aerobic granularsludge,AGS),考察了底物种类和浓度对AGS培养和稳定维持的影响.在反应器运行的最初阶段,以蔗糖为唯一碳源,进水ρ(COD)为600~900 mg/L,10 d后形成了结构较为密实的AGS,平均粒径为1.15±0.14 mm,污泥指数SVI在90 mL/g左右;AGS稳定维持23 d后,ρ(COD)由900 mg/L增加到1 200 mg/L,AGS表面出现了大量丝状菌,AGS平均丝状化程度Δ值最大达到了1.69±0.23 mm,SVI增加至175 mL/g.为克服AGS丝状菌膨胀,以蔗糖+蛋白胨(1∶1)的混合底物代替单一底物,AGS表面的丝状菌逐渐减少,34 d后AGS表面"光滑",AGS丝状菌膨胀得到抑制,Δ值逐步下降至1.00±0.01 mm.ρ(COD)从600 mg/L增加至1 200 mg/L,AGS依旧保持稳定,未出现丝状菌大量繁殖的现象.本研究表明,单一底物培养AGS在负荷较高时容易出现丝状菌膨胀,而混合底物可以抑制AGS丝状菌膨胀,有利于AGS的稳定维持.  相似文献   

18.
以污水处理厂氧化沟污泥为泥种,采用进水低碳高磷、两阶段的运行方式进行反硝化聚磷污泥的培养,约100 d成功驯化培养出反硝化聚磷污泥.第1阶段以厌氧/好氧的运行方式驯化好氧聚磷污泥,运行约40 d,最大释磷量、最大聚磷量和最大除磷量分别可达到77.2、89.4、25.0 mg/L,表现出较强的聚磷能力;第2阶段采用厌氧/缺氧/好氧的运行方式驯化反硝化聚磷污泥,运行60 d,缺氧聚磷量占总聚磷量的百分比呈上升趋势.硝化污泥经过100 d的驯化可去除约50 mg/L的氨氮,硝化率基本稳定在98.5%以上.硝化速率本符合零级动力学方程,比硝化速率常数为0.0024h-1;好氧聚磷速率和缺氧聚磷速率基本符合一级动力学方程,速率常数分别是0.377、0.740 g/(L·h-1).利用驯化培养成功的反硝化聚磷污泥和硝化污泥进行了A2N-SBR试验,结果表明:在进水COD、氨氮和磷分别为188.0、54.8、7.25 mg/L时,去除率分别为93.5%、76.7%和94.1%,驯化培养的双污泥具有良好的脱氮除磷效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号