首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Counter current bubble columns have the feature that specific gas-liquid interfacial area and gas holdup are larger than those for standard and cocurrent bubble columns. In this study, three different flow regimes, churn-turbulent flow, bubble flow and bubble down-flow, have been observed in a counter-current bubble column and correlations of gas holdup and volumetric liquid-phase mass transfer coefficient have been proposed as functions of operating variables such as the superficial velocities of gas and liquid, the gas-liquid slip velocity and the liquid properties.  相似文献   

2.
The influence of a gas‐liquid chemical reaction on the interfacial area produced in a contactor is analyzed. Two different amines were used to capture carbon dioxide by chemical absorption. The effects of the operation time, the amine used, the concentration interval, and the gas flow rate on typical hydrodynamic parameters used in bubble columns such as the gas holdup and the Sauter mean diameter were investigated. These parameters were used to determine the interfacial area value. Significant influences on the gas‐liquid interfacial area were detected, mainly caused by the reaction rate intensity, the physicochemical properties of the liquid phase, and the gas flow rate fed to the contactor.  相似文献   

3.
Precise measurement of gas-liquid interfacial surface area is essential to reactor design and operation. Mass transfer from the gas phase to the liquid phase is often a key feature that controls the overall process. Measurement of gas-liquid interfacial area is often made through a separate measurement of the gas holdup and bubble size with complex and/or sophisticated methods. In this work, an inexpensive method is presented for the simultaneous determination of both local gas holdup and bubble diameter. The method is based on the withdrawal of the air-liquid dispersion under non-isokinetic conditions and on bubble counting via a simple optical device. The method was calibrated in a bubble column with several withdrawal pressures using coalescing and non-coalescing media. During the same calibration experiment, gas holdup was also measured manometrically and individual bubble diameters were measured by a photographic method. With a vacuum pressure of 3 kPa, local interfacial area measured with the withdrawal method produced a relative error below 13%, compared to the manometric/photographic method. The method was then used to characterize local specific interfacial area in a bubble column under several operating conditions with coalescing and non-coalescing media. In coalescing media and with superficial gas velocities (vg) from 0.25 to 3.5 cm/s, the average interfacial area ranged from 17 to . With non-coalescing media the average interfacial area ranged from 40 to . Under the test condition it was observed that gas holdup is a parameter that has a greater distribution (standard deviation from 30% to 70%) than the volume-mean bubble diameter (standard deviation from 6% to 12%). It is shown that a model previously developed for characterizing gas holdup homogeneity is also suitable for characterizing interfacial area homogeneity.  相似文献   

4.
Gas holdup, effective interfacial area and volumetric mass transfer coefficient were measured in two and three phase downflow bubble columns. The mass transfer data were obtained using the chemical method of sulfite oxidation, and the gas holdup was measured using the hydrostatic technique. Glass beads and Triton 114 were used to study the effects of solids and liquid surface tension on the gas holdup and the mass transfer parameters a and kLa. The gas holdup in three phase systems was measured for non-wettable (glass bead) and wettable (coal and shale particles) solids.

The mass transfer data obtained in the downflow bubble column were compared with the values published for upflow bubble columns. The results indicate that in the range of superficial gas velocities (0.002-0.025) m/s investigated, the values of the mass transfer coefficient were of the same order of magnitude as those observed in upflow systems, but the values of interfacial area were at least two fold greater. Also, the results showed that the operating variables and the physical properties had different influences on a and kLa in the downflow bubble column. Correlations for a and kLa for the downflow bubble column are proposed which predict the data with adequate accuracy in the range of operating conditions investigated.  相似文献   

5.
气升式外环流反应器流体力学参数的轴径向分布   总被引:5,自引:5,他引:0       下载免费PDF全文
在气升式外环流反应器(Φ 0.09 m×1.8 m)内,利用压差法和双探针电导探头技术考察了不同表观气速下空气-水两相体系中气含率及气泡参数随轴径向位置的变化规律,测得了平均及局部气含率、气泡尺寸及分布、气泡上升速度、气泡频率以及气液相界面积,并从气液流场特征及气泡间相互作用等方面对实验结果作出分析。基于实验数据拟合出局部气含率随表观气速和轴径向位置的关联式。  相似文献   

6.
The velocity‐holdup relationship is the most important design parameter for gas—liquid bubble column reactors, providing the basis for the prediction of heat and mass transfer coefficients and information on hydrodynamic conditions. A summary of the literature on gas holdup in bubble columns is supplemented by new experimental results which extend the data range. A criterion for the gas velocity leading to the transition between homogeneous and heterogeneous regimes for perforated plate gas distributors has been developed. Correlations for gas holdup in both regimes are developed and verified against both new and existing data.  相似文献   

7.
The hydrodynamics and mass transfer in a large diameter bubble column (Dc 0.305 m), specifically, the effects of gas velocity and the presence of solids on the gas holdup structure, gas-liquid interfacial area, and volumetric mass transfer coefficients in viscous as well as low viscosity solutions are studied. The sulfite oxidation technique was employed to measure the gas-liquid interfacial area. Volumetric mass transfer coefficients were measured using a chemical method (sulfite oxidation) as well as physical absorption of oxygen from air, and the overall gas holdups were measured using the hydrostatic head technique. The effect of solids on the gas holdup structure was examined using the dynamic gas disengagement method. With the addition of polystyrene particles, the gas-liquid interfacial area decreased for low viscosity systems, whereas it increased for viscous systems. This was shown to be due to the effect of solids on bubble coalescence. The wettability characteristics of solid surfaces in the presence of different liquids have been suggested as the reason for the effect of solids on coalescence. Oil shale slurries presented a special case because of the mineral dissolution effect.  相似文献   

8.
The carbon dioxide absorption process by triethanolamine aqueous solutions was analyzed in a bubble‐column reactor taking into account the chemical reaction mechanism, gas‐liquid interfacial area, and mass transfer rate. A speciation study of this gas‐liquid system was developed by 1H and 13C NMR spectroscopy in order to obtain the reaction mechanism and stoichiometry. The gas‐liquid interfacial area was evaluated considering the variations of bubble size distribution and gas holdup during the operation time. The liquid‐phase mass transfer coefficient was calculated from the carbon dioxide absorption rate data by interfacial area evolution and reaction stoichiometry.  相似文献   

9.
New correlations have been proposed for estimation of gas phase holdup, characteristic velocity, interfacial area for mass transfer and mean bubble size of bubble swarms under dispersed and fluidized operation of bubble columns employing single — and multi-orifice distributors. The analysis of results include available literature data of other investigators.  相似文献   

10.
New correlations have been proposed for estimation of gas phase holdup, characteristic velocity, interfacial area for mass transfer and mean bubble size of bubble swarms under dispersed and fluidized operation of bubble columns employing single — and multi-orifice distributors. The analysis of results include available literature data of other investigators.  相似文献   

11.
Mean gas holdup, lateral distribution of gas holdup and axial mixing of gas and liquid were measured in bubble columns of 12 and 19cm i.d. The lateral distribution of gas holdup was strongly dependent on the flow regimes in the column. The axial mixing of liquid in the homogeneous bubble flow regime was much smaller than that in the heterogeneous bubble flow regime, and was not expressed by existing correlations. The axial mixing of liquid in the homogeneous bubble flow and the intermediate flow regime was simulated with a flow model based on the lateral distribution of buoyancy force and the effective viscosity. The axial mixing of gas was larger than that of liquid.  相似文献   

12.
The hydrodynamics and mass transfer in a large diameter bubble column (Dc 0.305 m), specifically, the effects of gas velocity and the presence of solids on the gas holdup structure, gas-liquid interfacial area, and volumetric mass transfer coefficients in viscous as well as low viscosity solutions are studied. The sulfite oxidation technique was employed to measure the gas-liquid interfacial area. Volumetric mass transfer coefficients were measured using a chemical method (sulfite oxidation) as well as physical absorption of oxygen from air, and the overall gas holdups were measured using the hydrostatic head technique. The effect of solids on the gas holdup structure was examined using the dynamic gas disengagement method. With the addition of polystyrene particles, the gas-liquid interfacial area decreased for low viscosity systems, whereas it increased for viscous systems. This was shown to be due to the effect of solids on bubble coalescence. The wettability characteristics of solid surfaces in the presence of different liquids have been suggested as the reason for the effect of solids on coalescence. Oil shale slurries presented a special case because of the mineral dissolution effect.  相似文献   

13.
Local hydrodynamics of a gas–liquid–solid system,such as bubble circulation regime,gas holdup,liquid velocity and axial profile of solid concentration,are studied in a two-stage internal loop airlift reactor.Empirical correlations for gas holdup and liquid velocity are proposed to ease the reactor design and scale-up.Different bubble circulation regimes were displayed in the first(lower) and second(upper) stages.Increasing superficial gas velocity and solid loading can promote regime transition of the second stage,and the gas holdup of the second stage is higher than that of the lower stage.In addition,the effects of solid loading on bubble behaviour are experimentally investigated for each stage.It is found that bubble size in the downcomer decreases with the presence of solid particles,and bubble size distribution widens under higher superficial gas velocity and lower solid loading.  相似文献   

14.
Measurements are reported on pressure drop, holdup and interfacial area in a vertical column where a multi-liquid jet ejector has been used for gas dispersion. Studies have been carried out in the bubble zone up to the onset of slugging. Correlations in terms of physical and dynamic variables have been developed to predict irreversible loss and holdup in such systems. Extensive statistical analysis showed that the correlations are highly significant at the 99 per cent confidence level. Measurements of interfacial area have been carried out by the chemical method. The measured values of the interfacial area were in the range of 5000 to 25000 m2/m3 in the ejector and 450 to 2650 m2/m3 in the total system. A correlation for predicting interfacial area has also been proposed as a function of the holdup in the system.  相似文献   

15.
The process intensification of interfacial area and reaction conditions in multi-phase systems are important issues in industrially scaled reactors. In order to investigate the intensifying effect of micro-interface system on gas-liquid mass transfer and reaction rate, the ammonium sulfite oxidation was selected as the research object. A systematic air forced oxidation experiment was carried out through the micro-interface intensification reactor (MIR) and the traditional bubble column reactor (BCR) under the same experiment platform and operating conditions. The bubble size distribution and overall gas holdup were measured by high-speed camera technology and differential pressure measurement, respectively. The experimental results showed that MIR obtained higher gas holdup because of the micro-interface structure, the interfacial area was increased by more than 10 times, the reaction rate increased by 56.8% averagely compared with BCR. The experimental conclusions provide certain data support for the industrial application of the multiphase reaction system of the micro-interface intensification reactor.  相似文献   

16.
采用电导探针测定了冷态鼓泡塔中不同气速下的气泡直径及气含率的轴向分布,考察了分布板对鼓泡塔操作性能的影响.结果表明:随着开孔率的减小,从均匀鼓泡区到过渡区的转变提前;在均匀鼓泡区,开孔率对气泡直径影响较小;在过渡区,开孔率大的分布器形成的稳定气泡直径较小、气含率较大;分布板开孔直径越大,形成的初始气泡直径越大,但对轴向气泡直径分布的影响仅限于分布器区.包含分布器影响的气泡直径经验关联式为d/D=140.2Bo-0.5Ga-0.12Fr0.099(h/D)-0.15T-0.34(0.5 cm/s<ug<7 cm/s).  相似文献   

17.
亚硫酸铵微界面强化氧化特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
杨国强  曾伟  罗华勋  杨高东  张志炳 《化工学报》2020,71(11):4918-4926
以亚硫酸铵水溶液的空气氧化为研究对象,考察了微界面强化对该体系传质与氧化过程的影响。在同一实验平台和操作工况下,对微界面强化与传统鼓泡塔氧化过程的传质和反应性能进行了实验研究。利用高速摄像与压差测量技术,分别对反应过程的空气气泡分布与气含率变化进行了测定。结果表明,相较于传统鼓泡塔空气氧化反应器,微界面强化氧化反应器以微界面体系取代了传统毫-厘米级宏界面,在不同盐离子浓度与氧化气量工况下均表现出了良好的强化效能。在微界面体系强化下,亚硫酸铵氧化过程气含率大幅提升,相界面积增加十余倍,反应速率平均提升56.8%,实验结论为微界面强化反应器的多相反应体系工业应用提供了一定的数据支撑。  相似文献   

18.
A new model for determining bubble size distributions in bubble columns by the dynamic gasdisengagement(DGD)technique is developed.It is based on an idea of non-uniform steady statedirstribution of bubble dispersion.Interpreting the axial non-uniformity,this model gives axial gasholdup distributions.If assuming an axially homogeneous dispersion,a radial gas holdup distributioncan be obtained.The Sauter mean diameters or specific interfacial areas for several systems areestimated by the technique.The results for an air-water system agree with those measured by afive-point conductivity probe technique.The obtained axial gas holdup distributions agree well withreported measurements and the radial gas holdup distributions are also reasonable.  相似文献   

19.
Gas holdup, effective interfacial area and volumetric mass transfer coefficient were measured in two and three phase downflow bubble columns. The mass transfer data were obtained using the chemical method of sulfite oxidation, and the gas holdup was measured using the hydrostatic technique. Glass beads and Triton 114 were used to study the effects of solids and liquid surface tension on the gas holdup and the mass transfer parameters a and kL a . The gas holdup in three phase systems was measured for non-wettable (glass bead) and wettable (coal and shale particles) solids.

The mass transfer data obtained in the downflow bubble column were compared with the values published for upflow bubble columns. The results indicate that in the range of superficial gas velocities (0.002-0.025) m/s investigated, the values of the mass transfer coefficient were of the same order of magnitude as those observed in upflow systems, but the values of interfacial area were at least two fold greater. Also, the results showed that the operating variables and the physical properties had different influences on a and kL a in the downflow bubble column. Correlations for a and kL a for the downflow bubble column are proposed which predict the data with adequate accuracy in the range of operating conditions investigated.  相似文献   

20.
The volumetric mass transfer coefficient and the interfacial area were measured for carbon dioxide absorption into water using a reciprocating plate column of plate geometry different from a Karr column. The specific interfacial area was governed by a change in bubble size at low agitation rates and by a variation in gas holdup at high agitation rates. The liquid phase mass transfer coefficient was strongly influenced by the agitation rate, the phase velocities and the plate geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号