首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solving a task scheduling problem is a key challenge for automatic test technology to improve throughput, reduce test time, and operate the necessary instruments at their maximum capacity. Therefore, this paper attempts to solve the automatic test task scheduling problem (TTSP) with the objectives of minimizing the maximal test completion time (makespan) and the mean workload of the instruments. In this paper, the formal formulation and the constraints of the TTSP are established to describe this problem. Then, a new encoding method called the integrated encoding scheme (IES) is proposed. This encoding scheme is able to transform a combinatorial optimization problem into a continuous optimization problem, thus improving the encoding efficiency and reducing the complexity of the genetic manipulations. More importantly, because the TTSP has many local optima, a chaotic non-dominated sorting genetic algorithm (CNSGA) is presented to avoid becoming trapped in local optima and to obtain high quality solutions. This approach introduces a chaotic initial population, a crossover operator, and a mutation operator into the non-dominated sorting genetic algorithm II (NSGA-II) to enhance the local searching ability. Both the logistic map and the cat map are used to design the chaotic operators, and their performances are compared. To identify a good approach for hybridizing NSGA-II and chaos, and indicate the effectiveness of IES, several experiments are performed based on the following: (1) a small-scale TTSP and a large-scale TTSP in real-world applications and (2) a TTSP used in other research. Computational simulations and comparisons show that CNSGA improves the local searching ability and is suitable for solving the TTSP.  相似文献   

2.
Neural Computing and Applications - The cloud computing systems are sorts of shared collateral structure which has been in demand from its inception. In these systems, clients are able to access...  相似文献   

3.
为有效地解决不同交货期窗口下的非等同并行多机提前/拖后调度问题,设计了一种分段编码的混合遗传算法。此编码方式能反映工件的分配序列,并利用调度优先级规则和最好适应值规则相结合的启发式算法对其顺序进行了调整,加快了收敛速度。同时为了更好地适应调度实时性和解大规模此类问题的需要,基于遗传算法自然并行性特点的基础上,实现了主从式控制网络模式下并行混合遗传算法。计算结果表明,此算法是有效的,优于遗传算法,有着较高的并行性,并能适用于大规模不同交货期窗口下非等同并行多机提前/拖后调度问题。  相似文献   

4.
The Journal of Supercomputing - The central cloud facilities based on virtual machines offer many benefits to reduce the scheduling costs and improve service availability and accessibility. The...  相似文献   

5.
Real-time tasks are characterized by computational activities with timing constraints and classified into two categories: a hard real-time task and a soft real-time task. In hard real-time tasks, tardiness can be catastrophic. The goal of hard real-time tasks scheduling algorithms is to meet all tasks’ deadlines, in other words, to keep the feasibility of scheduling through admission control. However, in the case of soft real-time tasks, slight violation of deadlines is not so critical.In this paper, we propose a new scheduling algorithm for soft real-time tasks using multiobjective genetic algorithm (moGA) on multiprocessors system. It is assumed that tasks have precedence relations among them and are executed on homogeneous multiprocessor environment.The objective of the proposed scheduling algorithm is to minimize the total tardiness and total number of processors used. For these objectives, this paper combines adaptive weight approach (AWA) that utilizes some useful information from the current population to readjust weights for obtaining a search pressure toward a positive ideal point. The effectiveness of the proposed algorithm is shown through simulation studies.  相似文献   

6.
There are many scheduling problems which are NP-hard in the literature. Several heuristics and dispatching rules are proposed to solve such hard combinatorial optimization problems. Genetic algorithms (GA) have shown great advantages in solving the combinatorial optimization problems in view of its characteristic that has high efficiency and that is fit for practical application [1]. Two different scale numerical examples demonstrate the genetic algorithm proposed is efficient and fit for larger scale identical parallel machine scheduling problem for minimizing the makespan. But, even though it is a common problem in the industry, only a small number of studies deal with non-identical parallel machines. In this article, a kind of genetic algorithm based on machine code for minimizing the processing times in non-identical machine scheduling problem is presented. Also triangular fuzzy processing times are used in order to adapt the GA to non-identical parallel machine scheduling problem in the paper. Fuzzy systems are excellent tools for representing heuristic, commonsense rules. That is why we try to use fuzzy systems in this study.  相似文献   

7.
In this paper, we proposed an effective genetic algorithm for solving the flexible job-shop scheduling problem (FJSP) to minimize makespan time. In the proposed algorithm, Global Selection (GS) and Local Selection (LS) are designed to generate high-quality initial population in the initialization stage. An improved chromosome representation is used to conveniently represent a solution of the FJSP, and different strategies for crossover and mutation operator are adopted. Various benchmark data taken from literature are tested. Computational results prove the proposed genetic algorithm effective and efficient for solving flexible job-shop scheduling problem.  相似文献   

8.
针对物流配送过程中存在的动态车辆调度问题,即带载车量约束的实时优化车辆路径问题,提出一种自适应量子遗传算法,用于最小化配送成本.根据搜索点目标函数的变化率,提出一种自适应量子旋转门更新方式,并通过子种群适应度值的变化确定量子旋转角的方向和大小,进而引导种群进化方向,提高算法的全局搜索广泛性;设计了一种变异操作,用于保持自适应量子遗传算法的种群多样性,进而提高算法全局搜索的宽泛性;引入基于两元素搜索原则的局部搜索方法来增强算法的局部优化能力.仿真实验和算法比较验证了所提算法的有效性和优越性.  相似文献   

9.
In this work, we tackle the problem of scheduling a set of jobs on a set of unrelated parallel machines with minimising the total weighted completion times as performance criteria. The iterated greedy metaheuristic generates a sequence of solutions by iterating over a constructive heuristic using destruction and construction phases. In the last few years, iterated greedy has been employed to solve a considerable number of problems. This is because it is based on a very simple principle, it is easy to implement, and it often exhibits an excellent performance. Moreover, scalability for high-dimensional problems becomes an essential requirement for modern optimisation algorithms. This paper proposes an iterated greedy model for the above-mentioned scheduling problem to tackle large-size instances. The benefits of our proposal in comparison to existing metaheuristics proposed in the literature are experimentally shown.  相似文献   

10.
为了提高遗传算法的搜索性能,同时满足网格资源的优化分配,提出了一种带过滤机制的遗传算法,使其适用于网格任务调度问题的优化处理.仿真研究表明该算法更符合网格调度的复杂环境,能得到较短的任务执行时间和较好的负载均衡性.  相似文献   

11.
Journal of Intelligent Manufacturing - This paper addresses the unrelated parallel machine scheduling problem with sequence and machine dependent setup times and machine eligibility constraints....  相似文献   

12.
In this paper we consider the problem of scheduling a collection of independent tasks on multiple processors (denote the number of processors by p) so that the maximum completion time is minimized. We present two new algorithms, the LPT-MinHeight (LPTMH) algorithm and the Split-LPT(SLPT) algorithm. Both algorithms are based on the LPT(Largest Processing Time first) algorithm. The worst case imbalance for the LPTMH algorithm never exceeds 1/(e − 1) ≤ 0.582, while the worst case imbalance for the SLPT algorithm is (p − 1)/(p + 1) < 1. The SLPT bound is equal to the bound for a previously published algorithm while the LPTMH bound is the best known so far. Both LPTMH and SLPT take much less running time than competing algorithms. Results of experiments show that the SLPT algorithm performs better on the average than the LPTMH algorithm and as well as other known algorithms.  相似文献   

13.
A general parallel task scheduling problem is considered. A task can be processed in parallel on one of several alternative subsets of processors. The processing time of the task depends on the subset of processors assigned to the task. We first show the hardness of approximating the problem for both preemptive and nonpreemptive cases in the general setting. Next we focus on linear array network of m processors. We give an approximation algorithm of ratio O(logm) for nonpreemptive scheduling, and another algorithm of ratio 2 for preemptive scheduling. Finally, we give a nonpreemptive scheduling algorithm of ratio O(log2m) for m×m two-dimensional meshes.  相似文献   

14.
This paper addresses the quay crane scheduling problem (QCSP), which has been shown to be NP-complete. For this reason, a number of studies have proposed the use of genetic algorithm (GA) as the means to obtain the solution in reasonable time. This study extends the research in this area by utilizing the GA that is available in the latest version of Global Optimization Toolbox in MATLAB 7.13 to facilitate development. It aims to improve the efficiency of the GA search by (1) using an initial solution based on the S-LOAD rule developed by Sammarra, Cordeau, Laporte, and Monaco (2007), (2) using a new approach for defining the chromosomes (i.e., solution representation) to reduce the number of decision variables, and (3) using new procedures for calculating tighter lower and upper bounds for the decision variables. The effectiveness of the developed GA is tested using several benchmark instances proposed by Meisel and Bierwirth (2011). Compared to the current best-known solutions, experimental results show that the proposed GA is capable of finding the optimal or near-optimal solution in significantly shorter time for larger problems.  相似文献   

15.
In this paper, we develop a simulation-based two-phase genetic algorithm for the capacitated re-entrant line scheduling problem. The structure of a chromosome consists of two sub-chromosomes for buffer allocation and server allocation, respectively, while considering all possible states of the system in terms of buffer levels of workstations and assigning a preferred job stage to each component of the chromosome. As an implementation of the suggested algorithm, a job priority-based randomized policy is defined, which reflects the job priority and the properness of local non-idling in allocating buffering and processing capacity to available job instances. The algorithm is combined with a polynomial time sub-optimal deadlock avoidance policy, namely, Bankers algorithm, and the fitness of a chromosome was evaluated based on simulation. The performance of the proposed algorithm is evaluated through a numerical experiment, showing that the suggested approach holds considerable promise for providing effective and computationally efficient approximations to the optimal scheduling policy that consistently outperforms the typically employed heuristics.  相似文献   

16.
Job shop scheduling problem is a typical NP-hard problem. To solve the job shop scheduling problem more effectively, some genetic operators were designed in this paper. In order to increase the diversity of the population, a mixed selection operator based on the fitness value and the concentration value was given. To make full use of the characteristics of the problem itself, new crossover operator based on the machine and mutation operator based on the critical path were specifically designed. To find the critical path, a new algorithm to find the critical path from schedule was presented. Furthermore, a local search operator was designed, which can improve the local search ability of GA greatly. Based on all these, a hybrid genetic algorithm was proposed and its convergence was proved. The computer simulations were made on a set of benchmark problems and the results demonstrated the effectiveness of the proposed algorithm.  相似文献   

17.
The purpose of this research is to determine an optimal batch size for a product and purchasing policy of associated raw materials. Like most other practical situation, this manufacturing firm has a limited storage space and transportation fleet of known capacity. The mathematical formulation of the problem indicates that the model is a constrained nonlinear integer program. Considering the complexity of solving such model, we investigate the use of genetic algorithms (GAs) for solving this model. We develop GA code with three different penalty functions usually used for constraint optimizations. The model is also solved using an existing commercial optimization package to compare the solution. The detailed computational results are presented.  相似文献   

18.
This paper presents a network parallel genetic algorithm for the one machine sequencing problem. It examines a parallel genetic algorithm in which processors exchange their best solution found at periodic intervals and the case when no exchange is performed. The network parallel genetic algorithm is executed on a cluster of IBM RS/6000 workstations using a master-slave approach. Performance to a serial genetic algorithm is reported.  相似文献   

19.
The re-entrant flow shop scheduling problem (RFSP) is regarded as a NP-hard problem and attracted the attention of both researchers and industry. Current approach attempts to minimize the makespan of RFSP without considering the interdependency between the resource constraints and the re-entrant probability. This paper proposed Multi-level genetic algorithm (GA) by including the co-related re-entrant possibility and production mode in multi-level chromosome encoding. Repair operator is incorporated in the Multi-level genetic algorithm so as to revise the infeasible solution by resolving the resource conflict. With the objective of minimizing the makespan, Multi-level genetic algorithm (GA) is proposed and ANOVA is used to fine tune the parameter setting of GA. The experiment shows that the proposed approach is more effective to find the near-optimal schedule than the simulated annealing algorithm for both small-size problem and large-size problem.  相似文献   

20.
Genetic algorithms for task scheduling problem   总被引:1,自引:0,他引:1  
The scheduling and mapping of the precedence-constrained task graph to processors is considered to be the most crucial NP-complete problem in parallel and distributed computing systems. Several genetic algorithms have been developed to solve this problem. A common feature in most of them has been the use of chromosomal representation for a schedule. However, these algorithms are monolithic, as they attempt to scan the entire solution space without considering how to reduce the complexity of the optimization process. In this paper, two genetic algorithms have been developed and implemented. Our developed algorithms are genetic algorithms with some heuristic principles that have been added to improve the performance. According to the first developed genetic algorithm, two fitness functions have been applied one after the other. The first fitness function is concerned with minimizing the total execution time (schedule length), and the second one is concerned with the load balance satisfaction. The second developed genetic algorithm is based on a task duplication technique to overcome the communication overhead. Our proposed algorithms have been implemented and evaluated using benchmarks. According to the evolved results, it has been found that our algorithms always outperform the traditional algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号