首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluates the pharmacokinetics, dosimetry, toxicity and therapeutic potential of radiolabeled NP-4 and MN-14 anti-CEA antibodies in medullary thyroid cancer (MTC). METHODS: Eighteen patients with advanced MTC entered exploratory clinical studies with therapeutic doses of 131I-labeled NP-4 and MN-14 murine monoclonal antibodies (MAbs) reactive with carcinoembryonic antigen (CEA). Doses administered ranged from 46 mCi for 131I-MN-14 lgG to 195 mCi for 131I-MN-14 F(ab)2 in patients negative for human anti-mouse antibodies (HAMA). RESULTS: The radioconjugate blood half-life (T1/2) for the whole lgG was 42.5+/-5.0 hr compared to 18.8+/- 4.1 hr for the bivalent fragments. Tumor doses of 17.5+/-11.0 and 11.4+/-6.3 cGy/mCi were estimated for 131I-MN-14 lgG and F(ab)2, respectively. Tumor/red marrow dose ratios exceeded 3:1 for most lesions. Red marrow doses of up to 350 cGy generally could be delivered with < grade 4 toxicity. Seven of 14 evaluable patients showed evidence of anti-tumor effects lasting up to 26 months, based on physical exam, tumor markers or computed tomography. CONCLUSION: This study demonstrates that anti-CEA MAbs may be suitable for radioimmunotherapy of metastatic or recurrent MTC.  相似文献   

2.
BACKGROUND: Metaiodobenzylguanidine (MIBG) labeled with 131I has been used for targeted radiotherapy of neural crest tumors, with bone marrow suppression being the primary dose-limiting toxicity. The purpose of this study was to examine the engraftment and toxicity of higher myeloablative doses of 131I-MIBG with autologous bone marrow support. PROCEDURE: Twelve patients with refractory neuroblastoma were given infusions of their autologous, cryopreserved bone marrow following 1-4 doses of 131I-MIBG. The median cumulative administered activity per kilogram of 131I-MIBG was 18.0 mCi/kg (range 14.1-50.2 mCi/kg), the median total activity was 594 mCi (range 195-1,353 mCi), and the median cumulative whole body irradiation from 131I-MIBG was 426 cGy (range 256-800 cGy). A median of 2.5 x 10(8) viable cells/kg (range 0.9-4.7 x 10(8) cells/kg) was given in the bone marrow infusion. RESULTS: All 12 patients achieved an absolute neutrophil count > 500/microliter with a median of 19 days, but only 5/11 evaluable patients achieved red cell transfusion independence, in a median of 44 days; and 4/11 evaluable patients achieved platelet count > 20,000/microliter without transfusion, in a median of 27 days. CONCLUSIONS: Autologous bone marrow transplantation may allow complete hematopoietic reconstitution following ablative 131I-MIBG radiotherapy in patients with neuroblastoma. Risk factors for lack of red cell or platelet recovery include extensive prior chemotherapy, progressive disease at the time of transplant, especially in the bone marrow, and a history of prior myeloablative therapy with stem cell support.  相似文献   

3.
PURPOSE: The CD20 B-lymphocyte surface antigen expressed by B-cell lymphomas is an attractive target for radioimmunotherapy, treatment using radiolabeled antibodies. We conducted a phase I dose-escalation trial to assess the toxicity, tumor targeting, and efficacy of nonmyeloablative doses of an anti-CD20 monoclonal antibody (anti-B1) labeled with iodine-131 (131I) in 34 patients with B-cell lymphoma who had failed chemotherapy. PATIENTS AND METHODS: Patients were first given tracelabeled doses of 131I-labeled anti-B1 (15 to 20 mg, 5 mCi) to assess radiolabeled antibody biodistribution, and then a radioimmunotherapeutic dose (15 to 20 mg) labeled with a quantity of 131I that would deliver a specified centigray dose of whole-body radiation predicted by the tracer dose. Whole-body radiation doses were escalated from 25 to 85 cGy in sequential groups of patients in 10-cGy increments. To evaluate if radiolabeled antibody biodistribution could be optimized, initial patients were given one or two additional tracer doses on successive weeks, each dose preceded by an infusion of 135 mg of unlabeled anti-B1 one week and 685 mg the next. The unlabeled antibody dose resulting in the most optimal tracer biodistribution was also given before the radioimmunotherapeutic dose. Later patients were given a single tracer dose and radioimmunotherapeutic dose preceded by infusion of 685 mg of unlabeled anti-B1. RESULTS: Treatment was well tolerated. Hematologic toxicity was dose-limiting, and 75 cGy was established as the maximally tolerated whole-body radiation dose. Twenty-eight patients received radioimmunotherapeutic doses of 34 to 161 mCi, resulting in complete remission in 14 patients and a partial response in eight. All 13 patients with low-grade lymphoma responded, and 10 achieved a complete remission. Six of eight patients with transformed lymphoma responded. Thirteen of 19 patients whose disease was resistant to their last course of chemotherapy and all patients with chemotherapy-sensitive disease responded. The median duration of complete remission exceeds 16.5 months. Six patients remain in complete remission 16 to 31 months after treatment. CONCLUSION: Nonmyeloablative radioimmunotherapy with 131I-anti-B1 is associated with a high rate of durable remissions in patients with B-cell lymphoma refractory to chemotherapy.  相似文献   

4.
Rhenium-186 is a beta-emitting radionuclide that has been studied for applications in radioimmunotherapy. Its 137 keV gamma photon is ideal for imaging the biodistribution of the immunoconjugates and for obtaining gamma camera data for estimation of dosimetry. Methods used for determining radiation absorbed dose are described. We have estimated absorbed dose to normal organs and tumors following administration of two different 186Re-labeled immunoconjugates, intact NR-LU-10 antibody and the F(ab')2 fragment of NR-CO-02. Tumor dose estimates in 46 patients varied over a wide range, 0.4-18.6 rads/mCi, but were similar in both studies. Accuracy of activity estimates in superficial tumors was confirmed by biopsy. Prediction of 186Re dosimetry from a prior 99mTc imaging study using a tracer dose of antibody was attempted in the NR-CO-02 (Fab')2 study. Although 99mTc was an accurate predictor of tumor localization and the mean predicted and observed radiation absorbed doses to normal organs compared favorably, 186Re dosimetry could not be reliably predicted in individual patients. The methods described nevertheless provide adequate estimates of 186Re dosimetry to tumor and normal organs.  相似文献   

5.
CC49, a murine monoclonal antibody that recognizes the tumor-associated glycoprotein 72, was conjugated to the chemical chelate 1,4,7,10-tetraaza-1-(1-carboxy-3-(4-aminophenyl) propyl)-tris-4,7,10- ((carboxy)methyl)cyclododecane that had been labeled with a beta emitter, Lu. Preclinical studies had shown that Lu-labeled CC49 caused regression of human colon adenocarcinoma xenografts in nude mice. Patients with advanced adenocarcinoma who had failed standard treatment and whose tumors expressed the tumor-associated glycoprotein 72 antigen were eligible for treatment to determine the maximum tolerated dose of Lu-labeled CC49. The starting dose of Lu was 10 mCi/m2 given i.v. with the dose of CC49 held constant at 20 mg. Pharmacokinetic sampling and immunoscintigraphy were performed over the ensuing 3 weeks. The dose of radioactive Lu was escalated by 15 mCi/m2 for each successive dose level. Unexpected bone marrow toxicity developed in patients treated at the second dose level with 25 mCi/m2 Lu; two patients developed grade 4 thrombocytopenia, while the third patient developed grade 3 thrombocytopenia. Pharmacokinetic studies showed that the plasma half-life of the immunoconjugate was 67 h; whole-body retention, however, was prolonged with a biological half-life of 258 h. Serial gamma camera imaging localized known tumor in all patients, and also demonstrated prolonged Lu retention in the reticuloendothelial system (RES). Bone marrow dosimetry estimates ranged from 4 to 5 REMS/mCi Lu based on imaging and biopsy data. Analysis of bone marrow biopsies demonstrated that most of the Lu was localized in the cellular compartment and not in the bone. No antitumor responses were observed. Intravenous administration of 15 mCi/m2 Lu-labeled CC49 to previously treated advanced cancer patients was associated with acceptable hematological toxicity and was the maximum tolerated dose. However, prolonged retention of Lu in the RES, including the bone marrow, was observed and limited the dose of Lu that could be given. Additional studies are indicated to reduce RES uptake and retention of this immunoconjugate.  相似文献   

6.
This Phase I/II radioimmunotherapy study was carried out to determine the maximum tolerated dose (MTD) and therapeutic potential of 131I-G250. Thirty-three patients with measurable metastatic renal cell carcinoma were treated. Groups of at least three patients received escalating amounts of 1311I (30, 45, 60, 75, and 90 mCi/m2) labeled to 10 mg of mouse monoclonal antibody G250, administered as a single i.v. infusion. Fifteen patients were studied at the MTD of activity. No patient had received prior significant radiotherapy; one had received prior G250. Whole-body scintigrams and single-photon emission computed tomography images were obtained in all patients. There was targeting of radioactivity to all known tumor sites that were > or =2 cm. Reversible liver function test abnormalities were observed in the majority of patients (27 of 33 patients). There was no correlation between the amount of 131I administered or hepatic absorbed radiation dose (median, 0.073 Gy/mCi) and the extent or nature of hepatic toxicity. Two of the first six patients at 90 mCi/m2 had grade > or =3 thrombocytopenia; the MTD was determined to be 90 mCi/m2 131I. Hematological toxicity was correlated with whole-body absorbed radiation dose. All patients developed human antimouse antibodies within 4 weeks posttherapy; retreatment was, therefore, not possible. Seventeen of 33 evaluable patients had stable disease. There were no major responses. On the basis of external imaging, 131I-labeled mouse monoclonal antibody G250 showed excellent localization to all tumors that were > or =2 cm. Seventeen of 33 patients had stable disease, with tumor shrinkage observed in two patients. Antibody immunogenicity restricted therapy to a single infusion. Studies with a nonimmunogenic G250 antibody are warranted.  相似文献   

7.
Myelotoxicity is the dose-limiting factor in radioimmunotherapy. Traditional methods most commonly used to estimate the radiation adsorbed dose to the bone marrow of patients consider contributions from radionuclide in the blood and/or total body. Targeted therapies, such as radioimmunotherapy, add a third potential source for radiation to the bone marrow because the radiolabeled targeting molecules can accumulate specifically on malignant target cells infiltrating the bone marrow. A non-invasive method for estimating the radiation absorbed dose to the red marrow of patients who have received radiolabeled monoclonal antibodies (MoAb) has been developed and explored. The method depends on determining the cumulated activity in three contributing sources: 1) marrow; 2) blood; and 3) total body. The novel aspect of this method for estimating marrow radiation dose is derivation of the radiation dose for the entire red marrow from radiation dose estimates obtained by detection of cumulated activity in three lumbar vertebrae using a gamma camera. Contributions to the marrow radiation dose from marrow, blood, and total body cumulated activity were determined for patients who received an I-131 labeled MoAb, Lym-1, that reacts with malignant B-lymphocytes of chronic lymphocytic leukemia and nonHodgkin's lymphoma. Six patients were selected for illustrative purposes because their vertebrae were readily visualized on lumbar images. The radiation doses to the marrow contributed by nonpenetrating emissions in the marrow blood and penetrating emissions in the total body were similar in these patients with a mean of 0.2 and 0.3 rads per administered mCi from the blood and total body, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The expected effective dose equivalent to an individual from contact with 131I anti-B1 radioimmunotherapy (RIT) patients released immediately after therapeutic infusion was estimated. METHODS: Effective dose equivalents were calculated retrospectively using data acquired on 46 patients treated with 1311 anti-B1 RIT as inpatients. Effective dose equivalents to members of the public were estimated using the method published in the Nuclear Regulatory Commission (NRC) Regulatory Guide 8.39, assuming the administered activity, the patient-specific effective half-life, the 0.25 occupancy factor, and no photon attenuation. Effective dose equivalents also were estimated using ionization chamber dose rates, measured immediately after therapeutic infusion and integrated to total decay based on the measured effective half-life. RESULTS: For the whole-body treatment absorbed dose limit of 75 cGy (75 rad), the administered 131I activity ranged from 2.1 to 6.5 GBq (56 to 175 mCi), and the measured dose rate at 1 m ranged from 70 to 190 microSv/hr (7 to 19 mrem/hr). The total-body effective half-life for these patients ranged from approximately 40 to 88 hr. Using the NRC method and not accounting for the attenuation of photons, the mean dose equivalent to the public exposed to an 131I anti-B1 patient discharged without hospitalization was 4.9 +/- 0.9 mSv (490 +/- 90 mrem). The range was 3.2-6.6 mSv (320 to 660 mrem), where 48% of patients would deliver a dose to another individual that is <5 mSv (500 mrem) (i.e., 48% of the patients would be allowed to return home immediately following the infusion). Using the measured dose rate method, the mean dose equivalent to an individual exposed to the same RIT patients was 2.9 +/- 0.4 mSv (290 +/- 40 mrem). The range was 2.0-3.7 mSv (200-370 mrem), where 100% of the estimated effective dose equivalents were <5 mSv (500 mrem). CONCLUSION: Based on calculated and patient-specific exposure data, outpatient RIT with nonmyeloablative doses of 131I should be feasible for all patients under current NRC regulations. Implementing outpatient RIT should make the therapy more widely available and more convenient and should lower patient care costs without exceeding accepted limits for public exposure to radiation.  相似文献   

9.
Chimeric T84.66 (cT84.66) is a high-affinity (1.16x10(11) M(-1)) IgG1 monoclonal antibody against carcinoembryonic antigen (CEA). The purpose of this pilot trial was to evaluate the tumor-targeting properties, biodistribution, pharmacokinetics and immunogenicity of 111In-labeled cT84.66 as a function of administered antibody protein dose. METHODS: Patients with CEA-producing colorectal cancers with localized disease or limited metastatic disease who were scheduled to undergo definitive surgical resection were each administered a single intravenous dose of 5 mg of isothiocyanatobenzyl diethylenetriaminepentaacetic acid-cT84.66, labeled with 5 mCi of 111In. Before receiving the radiolabeled antibody, patients received unlabeled diethylenetriaminepentaacetic acid-cT84.66. The amount of unlabeled antibody was 0, 20 or 100 mg, with five patients at each level. Serial blood samples, 24-hr urine collections and nuclear images were collected until 7 days postinfusion. Human antichimeric antibody response was assessed up to 6 mo postinfusion. RESULTS: Imaging of at least one known tumor site was performed in all 15 patients. Fifty-two lesions were analyzed, with an imaging sensitivity rate of 50.0% and a positive predictive value of 76.9%. The antibody detected tumors that were not detected by conventional means in three patients, resulting in a modification of surgical management. Interpatient variations in serum clearance rates were observed and were secondary to differences in clearance and metabolic rates of antibody and antibody:antigen complexes by the liver. Antibody uptake in primary tumors, metastatic sites and regional metastatic lymph nodes ranged from 0.4% to 134% injected dose/kg, resulting in estimated 90Y-cT84.66 radiation doses ranging from 0.3 to 193 cGy/mCi. Thirteen patients were evaluated 1-6 mo after infusion for human antichimeric antibody, and none developed a response. No major differences in tumor imaging, tumor uptake, pharmacokinetics or organ biodistribution were observed with increasing protein doses, although a trend toward increasing blood uptake and decreasing liver uptake was observed with increasing protein dose. CONCLUSION: Chimeric T84.66 demonstrated tumor targeting comparable to other radiolabeled intact anti-CEA monoclonal antibodies. Its immunogenicity after single administration was lower than murine monoclonal antibodies. These properties make 111In-cT84.66, or a lower molecular weight derivative, attractive for further evaluation as an imaging agent. Yttrium-90 dosimetry estimates predict potentially cytotoxic radiation doses to select tumor sites, which makes 90Y-cT84.66 also appropriate for further evaluation in Phase I radioimmunotherapy trials. Although clinically important changes in biodistribution, pharmacokinetics and tumor targeting with increasing protein doses of 111In-cT84.66 were not demonstrated, the results do suggest that antibody clearance from the blood is driven by hepatic uptake and metabolism, with more rapid blood clearance seen in patients with liver metastases. These patients with rapid clearance and potentially unfavorable biodistribution for imaging and therapy may, therefore, be a more appropriate subset in which to evaluate the role of administering higher protein doses. This underscores the need to further identify, characterize and understand those factors that influence the biodistribution and clearance of radiolabeled anti-CEA antibodies, to allow for better selection of patients for therapy and rational planning of radioimmunotherapy.  相似文献   

10.
PURPOSE: The analogue 131I-metaiodobenzylguanidine (MIBG), which is specifically targeted to neuroblastoma cells, may provide more effective and less toxic treatment for neuroblastoma than conventional external-beam radiotherapy. We report a dose escalation study of 131I-MIBG to define dose-limiting toxicity without and with autologous bone marrow support. PATIENTS AND METHODS: Thirty patients with relapsed neuroblastoma were treated in groups of six with escalating doses of 3 to 18 mCi/kg of 131I-MIBG. After rapid escalation in the first three patients treated at 3 to 6 mCi/kg, treatment was escalated in 3-mCi/kg increments from 9 to 18 mCi/kg. Autologous tumor-free bone marrow was cryopreserved in all patients receiving 12 mCi/kg and more. Toxicity and response were assessed. RESULTS: Eighty percent of patients who received 12 mC/kg or more experienced grade 4 thrombocytopenia and/or neutropenia. Dose-limiting hematologic toxicity was reached at 15 mCi/kg, at which level two of five assessable patients required bone marrow reinfusion for absolute neutrophil count (ANC) of less than 200/microL for more than 2 weeks, and four of nine at the 18-mCi/kg level. Prolonged thrombocytopenia was common, with failure to become platelet-transfusion independent in nine patients. One patient with extensive prior treatment developed secondary leukemia and three became hypothyroid. Responses were seen in 37% of patients, with one complete response (CR), 10 partial response (PR), three mixed response, 10 stable disease, and six progressive disease. The minimum dose of 131I-MIBG for 10 of the 11 responders was 12 mCi/kg. CONCLUSION: Treatment with 131I-MIBG has mainly hematologic toxicity, which can be abrogated with bone marrow rescue. The high response rate in refractory disease suggests that this agent may be useful in combination with myeloablative chemotherapy and autologous stem-cell rescue to improve outcome in advanced neuroblastoma.  相似文献   

11.
Technetium-99m TRODAT-1 is an analog of cocaine that selectively binds the presynaptic dopamine transporters. The primary purpose of this study was to measure its whole-body biokinetics and radiation dosimetry in healthy human volunteers. The study was conducted within a regulatory framework that required its pharmacological safety to be assessed simultaneously. METHODS: The sample included 4 men and 6 women ranging in age from 22-54 yr. An average of 20 whole-body scans were acquired sequentially on a dual-head camera for up to 46 hr after the intravenous administration of 370+/-16 MBq (10.0+/-0.42 mCi) 99mTc TRODAT. The renal excretion fractions were measured from 12-24 discrete urine specimens. The fraction of the administered dose in 17 regions of interest and each urine specimen was quantified from the attenuation and background corrected geometric mean counts in conjugate views. Multiexponential functions were iteratively fit to each time-activity curve using a nonlinear, least squares regression algorithm. These curves were numerically integrated to yield source organ residence times. Gender-specific radiation doses were then estimated with the Medical Internal Radiation Dose technique for each subject individually before any results were averaged. RESULTS: There were no pharmacological effects of the radiotracer on any of the subjects. The early planar images showed differentially increased activity in the nose, pudendum and stomach. SPECT images demonstrated that the radiopharmaceutical localized in the basal ganglia in a distribution that was consistent with selective transporter binding. Image analysis showed that the kidneys excreted between 20% and 32% of the injected dose during the first 22-28 hr postadministration, after which no more activity could be recovered in the urine. The dose limiting organ in both men and women was the liver, which received an average of 0.046 mGy/MBq (0.17 rads/mCi, range 0.14-0.22 rad/mCi). In the worst case, which was clearly an over-estimation, it would have taken 22.7 mCi to deliver 5 rad to the liver. CONCLUSION: TRODAT may be a safe and effective radiotracer for imaging dopamine transporters in the brain and the body.  相似文献   

12.
PURPOSE: Lym-1, a monoclonal antibody that preferentially targets malignant lymphocytes, has induced remissions in patients with non-Hodgkin's lymphoma (NHL) when labeled with iodine 131 ((131)I). Based on the strategy of fractionating the total dose, this study was designed to define the maximum-tolerated dose (MTD) and efficacy of the first two, of a maximum of four, doses of (131)I-Lym-1 given 4 weeks apart. Additionally, toxicity and radiation dosimetry were assessed. MATERIALS AND METHODS: Twenty patients with advanced NHL entered the study a total of 21 times. Thirteen (62%) of the 21 entries had diffuse large-cell histologies. All patients had disease resistant to standard therapy and had received a mean of four chemotherapy regimens. (131)I-Lym-1 was given after Lym-1 and (131)I was escalated in cohorts of patients from 40 to 100 mCi (1.5 to 3.7 GBq)/m2 body surface area. RESULTS: Mean radiation dose to the bone marrow from body and blood (131)I was 0.34 (range, 0. 1 6 to 0.63) rad/mCi (0.09 mGy/MBq; range, 0.04 to 0.17 mGy/ MBq). Dose-limiting toxicity was grade 3 to 4 thrombocytopenia with an MTD of 100 mCi/m2 (3.7 GBq/m2) for each of the first two doses of (131)I-Lym-1 given 4 weeks apart. Nonhematologic toxicities did not exceed grade 2 except for one instance of grade 3 hypotension. Ten (71 %) of 14 entries who received at least two doses of (131)I-Lym-1 therapy and 11 (52%) of 21 total entries responded. Seven of the responses were complete, with a mean duration of 14 months. All three entries in the 100 mCi/m2 (3.7 MBq/m2) cohort had complete remissions (CRs). All responders had at least a partial remission (PR) after the first therapy dose of (131)I-Lym-1. CONCLUSION: (131)I-Lym-1 induced durable remissions in patients with NHL resistant to chemotherapy and was associated with acceptable toxicity. The nonmyeloablative MTD for each of the first two doses of (131)I-Lym-1 was 100 mCi/m2 (total, 200 mCi/m2) (3.7 GBq/m2; total, 7.4 GBq/m2).  相似文献   

13.
As currently practiced, the doses delivered to tumors in radioimmunotherapy are less than desirable primarily because of dose-limiting bone marrow toxicity, thus reducing the therapeutic efficacy of this modality. The biological effectiveness of internal radionuclide therapy depends on the total dose, the rate at which it is delivered, and the fractionation schedule of the radiolabeled antibodies administered. A new approach, based on time-dose-fractionation (TDF), which has been used in conventional radiotherapy, is advanced. This approach incorporates differences in dose rates, biological half-lives of the antibodies, physical half-lives of the radionuclides employed and the total doses needed for a given biological effect. The TDF concept is illustrated with several relevant examples for radioimmunotherapy. Based on the TDF approach, it is proposed that under certain biological conditions radionuclides with physical half-lives that are 1-3 times the biological half-life of the radiolabeled antibodies in the tumor are more likely to deliver sterilization doses to tumors than the shorter-lived nuclides presently in use unless precluded by specific activity considerations. Several radionuclides that meet this criteria are suggested with 32P being the most promising among them. Finally, a practical method for treatment planning in radioimmunotherapy using TDF factors is recommended.  相似文献   

14.
Copper-62-pyruvaldehyde bis(N4-methyl)thiosemicarbazone (PTSM) has been proposed as a generator-produced radiopharmaceutical for perfusion imaging using PET. Several clinical studies have demonstrated the ability of 62Cu-PTSM to quantitate myocardial and cerebral perfusion in humans. Because 62Cu-PTSM is generator-produced, it can be provided to clinical centers without cyclotron availability and, therefore, represents a cost-effective, practical PET perfusion tracer for clinical applications. To assess the safety, time-dependent biodistribution, and whole-body and organ-specific absorbed radiation dose estimates of this tracer, a Phase I study of 62Cu-PTSM was performed using whole-body imaging with PET in 10 healthy volunteers and with the radiopharmaceutical delivered by a compact modular generator unit. METHODS: Five male and five female subjects underwent a series of clinical tests and head-to-midthigh, whole-body PET scans at three time points over 1 hr after intravenous injection of 62Cu-PTSM. Before injection of the tracer, PET transmission scans were performed and used to correct the emission data for attenuation. Final image data were expressed in units of mCi/cc. Using standard organ weights, the percent injected dose per organ was calculated. Biodistribution data were obtained at three different time points and from these data biological half-lives in different organs were determined for calculation of radiation absorbed dose estimates. RESULTS: The liver was seen as the critical organ receiving a dose of 0.0886 rad/mCi. This organ defined the maximum single injected dose at 56 mCi using the limit of 5 rads to a critical organ per study per year. The whole-body dose is 0.0111 rad/mCi, resulting in a 0.622 rad exposure with a maximum single injection dose. Only trace levels of activity were found in the urine, which suggests low levels of urinary excretion and bladder exposure. No significant clinical, electrocardiographic or laboratory abnormalities were seen after the injection of 62Cu-PTSM. CONCLUSION: Copper-62-PTSM is a clinically safe radiopharmaceutical with favorable dosimetry for human studies at injected doses significantly above those projected for use in clinical studies.  相似文献   

15.
The combination of COL-1 (anti-CEA) and CC49 (anti-TAG-72) has shown an increase in binding and distribution in colon cancer by immunoperoxidase staining compared to either antibody alone. To overcome tumor heterogeneity and allow delivery of higher radiation dose, 131I-labeled COL-1 and CC49 at a total dose of 75 mCi/m2 (2775 MBq/m2) were simultaneously administered to 14 patients with metastatic colon cancer. alpha-IFN (3 x 10(6) IU) was given s.c. on days -5 to +3 to increase carcinoembryonic antigen and TAG-72 antigen expression. Most patients had mild symptoms during IFN therapy, including mild neutropenia, fever, and malaise, which rapidly subsided after IFN cessation. No acute allergic reactions occurred with radioimmunotherapy; two patients experienced transient, delayed grade 2 arthralgias. Transient neutropenia and/or thrombocytopenia, which was maximal at 4-6 weeks, were consistent side effects without adverse events. All patients had tumor localization, and 13 of 14 patients achieved 4+ (highest grade) localization readings to at least one known site of disease. No objective responses occurred; 4 patients were stable and 10 progressed. Tumor dose estimates varied from 393 to 1327 cGy, including liver and extrahepatic sites. Combining two complementary antibodies and IFN administration appeared to increase localization intensity and radiation doses at tumor sites as compared to historical controls. The amount of radiation delivered to tumor sites was still below that required to cause tumor regressions in metastatic colorectal cancer.  相似文献   

16.
PURPOSE: To determine the maximum-tolerated dose (MTD) of iodine 131 (131I)-labeled 81C6 monoclonal antibody (mAb) in brain tumor patients with surgically created resection cavities (SCRCs) and to identify any objective responses to this treatment. METHODS: In this phase I trial, eligible patients were treated with a single injection of 131I-labeled 81C6. Cohorts of three to six patients were treated with escalating dosages of 131I (starting dose of 20 mCi with a 20-mCi escalation in subsequent cohorts) administered through an Ommaya reservoir in the SCRC. Patients were followed up for toxicity and response until death or for a minimum of 1 year after treatment. The SCRC patients, who were previously irradiated, were followed up without additional treatment unless progressive disease was identified. RESULTS: We administered 36 treatments of 131I doses up to 120 mCi to 34 previously irradiated patients with recurrent or metastatic brain tumors. Dose-limiting toxicity was reached at 120 mCi and was limited to neurologic or hematologic toxicity. None of the patients treated with less than 120 mCi developed significant neurologic toxicity; one patient developed major hematologic toxicity (MHT). The estimated median survival for patients with glioblastoma multiforme (GBM) and for all patients was 56 and 60 weeks, respectively. CONCLUSION: The MTD for administration of 131I-labeled 81C6 into the SCRCs of previously irradiated patients with recurrent primary or metastatic brain tumors was 100 mCi. The dose-limiting toxicity was neurologic toxicity. We are encouraged by the minimal toxicity and survival in this phase I trial. Radiolabeled mAbs may improve the current therapy for brain tumor patients.  相似文献   

17.
In this study, we examined the factors that may influence tumor dosimetry in the radioimmunotherapy of solid, CEA-expressing cancers. METHODS: Data from 119 tumors in 93 patients with CEA-expressing cancers were analyzed. The patients underwent radioimmunotherapy with the 131I-labeled IgG1 anti-CEA antibodies NP-4 (Ka = 10(8) M-1) or MN-14 (Ka = 10(9) M-1), its humanized form hMN-14, as well as the anticolon-specific antigen-p (CSAp) antibody, Mu-9. For dosimetry, the biodistribution, targeting kinetics and cumulated activity of tumors and organs were determined from planar and SPECT imaging. RESULTS: An inverse logarithmic relationship between tumor size and antibody uptake was found for both anti-CEA antibodies, whereas no such relationship was found for Mu-9. The absolute tumor uptake was identified as the most important factor determining the radiation dose to the tumor (r = 0.9), with the biological half-life of the antibody in the tumor being of secondary importance (r = 0.5). No significant difference in tumor uptake was found between both anti-CEA antibodies, despite their tenfold difference in affinity. At comparable masses, colorectal and medullary thyroid cancers had significantly higher tumor uptakes (p = 0.02), as well as tumor-to-red marrow dose ratios, than other cancer types. The tumor half-lives of the anti-CEA antibodies were significantly lower in colorectal than in all other tumor types (p = 0.01). CONCLUSION: In radioimmunotherapy, tumor uptake appears to be the most important dose-determining factor. Differences in antibody affinity are reflected by differences in the biological half-life, not the absolute uptake. Especially favorable conditions for anti-CEA antibodies seem to prevail in colorectal cancer patients having minimal disease, as well as in medullary thyroid cancer, where cytotoxic tumor doses might be expected. Antimucin antibodies may have a particular advantage in the treatment of patients with larger colorectal tumors.  相似文献   

18.
We present biodistribution and dosimetry results for 64Cu-benzyl-TETA-MAb 1A3 from 15 human subjects injected with this tracer as determined by serial PET imaging of the torso. METHODS: PET imaging was used to quantify in vivo tracer biodistribution at two time points after injection. Absorbed dosimetry calculated using MIRD-11 and the updated MIRDOSE3 was compared with estimates obtained using rat biodistribution data. RESULTS: By measuring activity concentrations in the torso, and extrapolating for the whole body using standard organ and tissue volumes, we were able to account for 93% of the injected radiopharmaceutical over a range of imaging times from 0 to 36 hr postinjection. Based on PET imaging and the MIRD-11 schema, the liver and spleen are the critical organs with average absorbed doses of 0.12 and 0.10 mGy/MBq (0.44 and 0.39 rad/mCi). The revised MIRDOSE3 scheme yields similar values for these and other organs but also results in a dose of 0.14 mGy/MBq (0.53 rad/mCi) to the heart wall. In the rat, the large intestine is the critical organ at 0.14 mGy/MBq (0.52 rad/mCi), while liver and kidneys each receive 0.11 mGy/MBq (0.41 rad/mCi). Some disparities in absorbed doses determined by these methods are evident but are a result of dissimilar biodistributions in rats and humans. For most organs, rat extrapolated values are higher than the human measurements with PET. CONCLUSION: This study shows that torso PET imaging can quantitatively measure the whole-body biodistribution of a radiopharmaceutical as long as it has relatively slow pharmacokinetics.  相似文献   

19.
BACKGROUND: This pilot project was undertaken to evaluate the toxicity of and tumor response to combined 131I anti-carcinoembryonic antigen monoclonal antibody (131I anti-CEA RMoAb) and hyperthermia in patients with metastatic colorectal adenocarcinoma. METHODS: Nine patients who had colorectal carcinoma with liver metastases were enrolled in this study. Intact 131I anti-CEA RMoAb was used (the specific antibody was IMMU-4, provided by Immunomedics, Inc., Morris Plains, NJ). During the diagnostic phase, dosimetry revealed that the tumor site received a higher radiation dose than the surrounding normal tissues in only six patients. These six, who were treated with radioimmunotherapy and hyperthermia, were the basis of this study. The first three patients were treated with 30 mCi/m2 of 131I anti-CEA RMoAb, and the next three received 60 mCi/m2. Pharmacokinetic clearance data were reported for all nine patients. RESULTS: Thermometry data revealed an average T90 of 40.3 (+/- 1.4 degrees C) and T50 of 41.1 (+/- 1.2 degrees C). The average thermal dose equivalent at 42.5 degrees C was 34.5 (+/- 21.5) minutes. The average Tmin, Tmax, and Tmeam were 40 (+/- 1.2 degrees C), 42.4 (+/- 0.7 degrees C), and 41.1 (+/- 1.1 degrees C), respectively. The pharmacokinetic clearance data of antibody showed monoexponential plasma clearances in all patients except one, in whom a biexponential plasma clearance was observed. In general, similar plasma and whole-body clearances as well as similar urinary excretions were observed when diagnostic and therapeutic phases for each patient were compared. Two of the six patients showed a marked improvement in their symptoms; five patients showed a drop in carcinoembryonic antigen levels. A follow-up computed tomography scan one month after treatment showed no change in tumor volume in five patients; one patient showed a partial response. Three patients developed toxicity, two developed moderate thrombocytopenia (39,000 and 58,000), and the other patient developed hematoma resulting from the insertion of a catheter for thermometry. CONCLUSIONS: It is feasible to combine hyperthermia and radiolabeled monoclonal antibodies, and the combination was well tolerated by these patients. The interaction between hyperthermia and low dose rate radioimmunotherapy is complex. Further studies are necessary to explore the use of this combined modality in the management of maligancies.  相似文献   

20.
Estimates of radiation absorbed dose to the red marrow (RM) would be valuable in treatment planning for radioimmunotherapy if they could show a correlation with clinical toxicity. In this study, a correlation analysis was performed to determine whether estimates of radiation absorbed dose to the bone marrow could accurately predict marrow toxicity in patients who had received 186Re-labeled monoclonal antibody. METHODS: White blood cell and platelet count data from 25 patients who received 186Re-NR-LU-10 during Phase I radioimmunotherapy trials were analyzed, and the toxicity grade, the fraction of the baseline counts at the nadir (percentage baseline) and the actual nadir were used as the indicators of marrow toxicity. Toxicity was correlated with various predictors of toxicity. These predictors included the absorbed dose to RM, the absorbed dose to whole body (WB) and the total radioactivity administered. RESULTS: Percentage baseline and grade of white blood cells and platelets all showed a moderate correlation with absorbed dose and radioactivity administered (normalized for body size). The percentage baseline platelet count was the indicator of toxicity that achieved the highest correlation with the various predictors of toxicity (r = 0.73-0.79). The estimated RM absorbed dose was not a better predictor of toxicity than either the WB dose or the total radioactivity administered. There was substantial variation in the blood count response of the patients who were administered similar radioactivity doses and who had similar absorbed dose estimates. CONCLUSION: Although there was a moderately good correlation of toxicity with dose, the value of the dose estimates in predicting toxicity is limited by the patient-to-patient variability in response to internally administered radioactivity. In this analysis of patients receiving 186Re-labeled monoclonal antibody, a moderate correlation of toxicity with dose was observed but marrow dose was of limited use in predicting toxicity for individual patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号